Show simple item record

dc.contributor.authorNedelec, Sophie L.
dc.contributor.authorCampbell, James
dc.contributor.authorRadford, Andrew N.
dc.contributor.authorSimpson, Stephen D.
dc.contributor.authorMerchant, Nathan D.
dc.date.accessioned2022-03-30T21:30:27Z
dc.date.available2022-03-30T21:30:27Z
dc.date.issued2016
dc.identifier.citationNedelec, S.L., Campbell, J., Radford, A.N., Simpson, S.D. and Merchant, N.D. (2016) Particle motion: the missing link in underwater acoustic ecology. Methods in Ecology and Evolution, 7, pp.836-842. DOI: https://doi.org/10.1111/2041-210X.12544en_US
dc.identifier.urihttps://repository.oceanbestpractices.org/handle/11329/1899
dc.description.abstract1. Sound waves in water have both a pressure and a particle-motion component, yet few studies of underwater acoustic ecology have measured the particle-motion component of sound. While mammal hearing is based on detection of sound pressure, fish and invertebrates (i.e. most aquatic animals) primarily sense sound using particle motion. Particle motion can be calculated indirectly from sound pressure measurements under certain conditions, but these conditions are rarely met in the shelf-sea and shallow-water habitats that most aquatic organisms inhabit. Direct measurements of particle motion have been hampered by the availability of instrumentation and a lack of guidance on data analysis methods. 2. Here, we provide an introduction to the topic of underwater particle motion, including the physics and physiology of particle-motion reception. We include a simple computer program for users to determine whether they are working in conditions where measurement of particle motion may be relevant. We discuss instruments that can be used to measure particle motion and the types of analysis appropriate for data collected. A supplemental tutorial and template computer code in MATLAB will allow users to analyse impulsive, continuous and fluctuating sounds from both pressure and particle-motion recordings. 3. A growing body of research is investigating the role of sound in the functioning of aquatic ecosystems, and the ways in which sound influences animal behaviour, physiology and development. This work has particular urgency for policymakers and environmental managers, who have a responsibility to assess and mitigate the risks posed by rising levels of anthropogenic noise in aquatic ecosystems. As this paper makes clear, because many aquatic animals senses sound using particle motion, this component of the sound field must be addressed if acoustic habitats are to be managed effectively.en_US
dc.language.isoenen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherAccelerometeren_US
dc.subject.otherInvertebratesen_US
dc.subject.otherBioacousticsen_US
dc.subject.otherUnderwater accousticsen_US
dc.subject.otherpaPAMen_US
dc.subject.otherUnderwater sounden_US
dc.titleParticle motion: the missing link in underwater acoustic ecology.en_US
dc.typeJournal Contributionen_US
dc.description.refereedRefereeden_US
dc.format.pagerangepp.836-842en_US
dc.identifier.doi10.1111/2041-210X.12544
dc.subject.parameterDisciplineAcousticsen_US
dc.bibliographicCitation.titleMethods in Ecology and Evolutionen_US
dc.bibliographicCitation.volume7en_US
dc.description.sdg14.aen_US
dc.description.eovOcean sounden_US
dc.description.adoptionValidated (tested by third parties)en_US
dc.description.methodologyTypeMethoden_US
dc.description.methodologyTypeReports with methodological relevanceen_US
obps.contact.contactnameSophie.Nedelec
obps.contact.contactemailsophie.nedelec@bristol.ac.uk
obps.resourceurl.publisherhttps://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12544


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International