Show simple item record

dc.contributor.authorKalmikov, Alexander G.
dc.contributor.authorHeimbach, Patrick
dc.date.accessioned2020-02-13T22:08:30Z
dc.date.available2020-02-13T22:08:30Z
dc.date.issued2014
dc.identifier.citationKalmikov, A.G. and Heimbach, P. (2014) A Hessian-based method for uncertainty quantificiation in gllobal ocean state estimation. SIAM Journal of Scientific Computing, 36(5), pp. S267–S295. DOI: 10.1137/130925311en_US
dc.identifier.urihttp://hdl.handle.net/11329/1216
dc.identifier.urihttp://dx.doi.org/10.25607/OBP-733
dc.description.abstractDerivative-based methods are developed for uncertainty quantification (UQ) in largescale ocean state estimation. The estimation system is based on the adjoint method for solving a least-squares optimization problem, whereby the state-of-the-art MIT general circulation model (MITgcm) is fit to observations. The UQ framework is applied to quantify Drake Passage transport uncertainties in a global idealized barotropic configuration of the MITgcm. Large error covariance matrices are evaluated by inverting the Hessian of the misfit function using matrix-free numerical linear algebra algorithms. The covariances are projected onto target output quantities of the model (here Drake Passage transport) by Jacobian transformations. First and second derivative codes of the MITgcm are generated by means of algorithmic differentiation (AD). Transpose of the chain rule product of Jacobians of elementary forward model operations implements a computationally efficient adjoint code. Computational complexity of the Hessian code is reduced via forward-over-reverse mode AD, which preserves the efficiency of adjoint checkpointing schemes in the second derivative calculation. A Lanczos algorithm is applied to extract the leading eigenvectors and eigenvalues of the Hessian matrix, representing the constrained uncertainty patterns and the inverse of the corresponding uncertainties. The dimensionality of the misfit Hessian inversion is reduced by omitting its nullspace (as an alternative to suppressing it by regularization), excluding from the computation the uncertainty subspace unconstrained by the observations. Inverse and forward uncertainty propagation schemes are designed for assimilating observation and control variable uncertainties and for projecting these uncertainties onto oceanographic target quantitiesen_US
dc.language.isoenen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherUncertainty propagationen_US
dc.subject.otherPrincipal uncertainty patternsen_US
dc.subject.otherPosterior error reductionen_US
dc.subject.otherHessian methoden_US
dc.subject.otherAlgorithmic differentiation (AD)en_US
dc.subject.otherMIT general circulation model (MITgcm)en_US
dc.subject.otherDrake Passage transporten_US
dc.subject.otherLarge-scale ill-posed inverse problemen_US
dc.titleA Hessian-based method for uncertainty quantification in global ocean state estimation.en_US
dc.typeJournal Contributionen_US
dc.description.refereedRefereeden_US
dc.format.pagerangepp. S267–S295en_US
dc.identifier.doi10.1137/130925311
dc.subject.parameterDisciplineParameter Discipline::Physical oceanographyen_US
dc.bibliographicCitation.titleSIAM Journal of Scientific Computingen_US
dc.bibliographicCitation.volume36en_US
dc.bibliographicCitation.issue5en_US
dc.description.sdg14.Aen_US
dc.description.bptypeManual (incl. handbook, guide, cookbook etc)en_US
obps.contact.contactnameAlexander Kalmikov
obps.contact.contactemailkalex@alum.mit.edu
obps.resourceurl.publisherhttps://epubs.siam.org/doi/pdf/10.1137/130925311en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International