Show simple item record

dc.contributor.authorIskandarani, M.
dc.contributor.authorWang, S.
dc.contributor.authorSrinivasan, A.
dc.contributor.authorCarlisle Thacker, W.
dc.contributor.authorWinokur, J.
dc.contributor.authorKnio, O. M.
dc.date.accessioned2020-02-13T21:26:00Z
dc.date.available2020-02-13T21:26:00Z
dc.date.issued2016
dc.identifier.citationIskandarani, M.; Wang, S.; Srinivasan, A.; Carlisle Thacker, W. ; Winokur, J. and Knio, O.M. (2016) An overview of uncertainty quantification techniques with application to oceanic and oil-spill simulations, J. Geophyshysical Research: Oceans, 121, pp.2789–2808 DOI:10.1002/2015JC011366.en_US
dc.identifier.urihttp://hdl.handle.net/11329/1214
dc.identifier.urihttp://dx.doi.org/10.25607/OBP-731
dc.description.abstractWe give an overview of four different ensemble-based techniques for uncertainty quantification and illustrate their application in the context of oil plume simulations. These techniques share the common paradigm of constructing a model proxy that efficiently captures the functional dependence of the model output on uncertain model inputs. This proxy is then used to explore the space of uncertain inputs using a large number of samples, so that reliable estimates of the model’s output statistics can be calculated. Three of these techniques use polynomial chaos (PC) expansions to construct the model proxy, but they differ in their approach to determining the expansions’ coefficients; the fourth technique uses Gaussian Process Regression (GPR). An integral plume model for simulating the Deepwater Horizon oil-gas blowout provides examples for illustrating the different techniques. A Monte Carlo ensemble of 50,000 model simulations is used for gauging the performance of the different proxies. The examples illustrate how regression based techniques can outperform projection-based techniques when the model output is noisy. They also demonstrate that robust uncertainty analysis can be performed at a fraction of the cost of the Monte Carlo calculation.en_US
dc.language.isoenen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherUncertainty quantificationen_US
dc.subject.otherPolynomial chaosen_US
dc.subject.otherGaussian processesen_US
dc.subject.otherIntegral plume modelen_US
dc.titleAn overview of uncertainty quantification techniques with application to oceanic and oil-spill simulations.en_US
dc.typeJournal Contributionen_US
dc.description.refereedRefereeden_US
dc.format.pagerangepp.2789-2808en_US
dc.identifier.doi10.1002/ 2015JC011366
dc.subject.parameterDisciplineParameter Discipline::Physical oceanographyen_US
dc.bibliographicCitation.titleJournal of Geophysical Research: Oceansen_US
dc.bibliographicCitation.volume121en_US
dc.description.sdg14.Aen_US
dc.description.bptypeManual (incl. handbook, guide, cookbook etc)en_US
obps.contact.contactnameM. Iskandarani
obps.contact.contactemailmiskandarani@rsmas.miami.edu
obps.resourceurl.publisherhttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JC011366en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International