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N O T E
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Oceanographic Commission (of UNESCO), and the World Meteorological Organization concerning the
legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its
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FOREWORD

Wind waves strongly affect all kinds of maritime
activities, and their worst effects usually come from
the highest waves. The Eleventh Session of the
WMO Commission for Marine Meteorology noted
the need for maritime service providers to have the
capability of predicting in real-time and estimating
parameters of the highest wind waves. In response
to this requirement a technical paper
[Boukhanovsky A.V. et al, 1998] was published by
the WMO. It deals with the evaluation of the
highest wave hmax  for short periods of time
(approximately 1-3 hours long when the wave field
can be considered as a quasi-stationary process),
and for a single storm, which can be from one to
several days long. The basic purpose of methods
considered in that paper is the actual prediction of
the highest wave range in a storm.

The current publication continues the analysis of
methods available for the evaluation of the hmax for
longer time periods. It extends the time scale of
applications for a series of storms and also
considers wave heights of long return period. Such
estimates are of crucial value for offshore design
and real-time support of corresponding operations.
Of course, this is not the only publication, which
has been written on this subject. There are many
good papers and books. A recent publication on

methods available for analysis of wave climate and
long return period waves can be found, for
example, in the WMO Guide to Wave Analysis and
Forecasting (1998), see chapter 9 and Annex III
edited by D. Carter and V. Swail. That chapter
contains references to many other useful
publications.

In the review we did not address such highly
important areas of activities as wind/wave
observations, data assimilation, numerical
modelling, or accurate reconstruction of the wind
field for individual cases of the most severe
storms. Significant progress has been recently
reported in all of these areas. The purpose of this
review is to informally complement the WMO guide
and other existing publications with an analysis of
the methods available for statistical data
processing aimed at the estimation of extreme
wave parameters. Also, an attempt is made to
highlight some results of studies available in the
literature of Eastern Europe, which apparently
have not received sufficient consideration by the
global reader. The scope of the methods described
in the review reflects to some extent the
preferences and experience of the authors, which
have been developed in the course of the thorny
process of servicing the offshore industry.

---oooOooo---
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mostly focuses on methods available for
evaluation of different quantiles of wave height
distribution. Each of the considered methods
has its advantages and shortcomings and
must be used accordingly. In order to compare
the methods, it important to examine not only
point estimates of the extreme wave heights
but also corresponding probabilistic ranges.

9. In order to efficiently use the described
methods in practice, it is very important to
define the measure of acceptable risk. This
involves a very delicate balance of factors
where the consequences of the damage, the
cost of construction, and the cost of mitigating
consequences of a possible accident are major
considerations.

---oooOooo---
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SUMMARY

1. Despite some significant recent achievements
in developing methods and obtaining suitable
data for the estimation of extreme wave
parameters, the problem of their determination
in terms of statistical analysis techniques is still
far from having a completely satisfactory
theoretical and practical solution. Existing
reference books on waves focus mostly on
information related to regular features of the
wave field, not the extremes.

2. User requirements in terms of data
nomenclature, accuracy and reliability are
steadily becoming more stringent. The
increase in sophistication of marine platforms
and the expansion of offshore activities to new
regions mean that increasingly expensive
property is at risk of being damaged by high
waves. Modern offshore operators require not
only estimates of extreme wave heights. They
need also complementary estimates of
parameters associated with extreme waves,
starting from the period and direction of the
waves and ending with their spectra,
associated currents, and estimates of forces
acting on the structure. What they are looking
for is, rather often, not simple estimates, but
informative and authoritative support in their
decision-making. That is why the subject of
this study reflects only one stage in the
development of full-range services for offshore
operators and coastal management.

3. Significant recent changes in the area of
extreme wave height analysis are related to
the availability of new data types and models.
At present, we have access to 10-20-year long
data series of instrumental wave observations
at automatic moored buoys and fixed
platforms. Almost all of them are located in
coastal areas. The contribution of satellite
observations is becoming increasingly valuable
in this area of research. Remotely sensed data
still require some verification and bias
correction. The efficient use of wave
observations from polar-orbiting satellites
requires data assimilation that produces a
continuous field of wave spectrum parameters.

4. Numerical simulation of the wave spectrum by
the most sophisticated models, driven by multi-
year times series of meteorological fields, now
represents the main source of data for wave
climate studies, including studies of extreme
waves. While most of the wave models are
well tuned for forecasting and hindcasting of

routine situations, both the models and their
meteorological forcing, the analysis of near
surface wind, may need additional verification
and adjustment for studying extreme waves.
There are some very successful examples of
producing wind fields in individual severe
storms using a combination of objective and
subjective methods.

5. The results of the recent meteorological re-
analysis project provide, for the first time in the
history of marine meteorology, a forcing field
that is continuous in time and space and is
sufficiently long. Using this data, it is possible
to numerically simulate a 40-year long wave
series, and detect with considerable accuracy
all significant storms affecting any area of
interest. Trends of global wave statistics can
be determined as well.

6. Wind waves are a complicated poli-modulated,
poli-cyclic random process. They are poli-
cyclic because of the simultaneous existence
in the wave field of wind seas and swell,
sometimes including more than one swell
system. Poli-modulation is associated with the
synoptic, seasonal, and inter-annual variability
of wave parameters. Both features must be
taken into account in studying extreme waves.
The highest possible waves in many locations
are often associated with the contribution of
swell to the combined wave field. Their
occurrence is most likely to occur during a
certain season of a year. One should also
consider the possible effect of trends
associated with climate variations or long-term
variability.

7. Two methods of estimating extreme wave
heights, namely AMS and BOLIVAR, can take
into account multiple variability scales in the
extreme waves. The AMS method has the
most solid theoretical foundation. The
BOLIVAR method represents a further
development that includes consideration of the
second, third and, potentially other maxima in
a year. If one is interested in further
breakdown of extreme wave height estimates
with respect to wave directions and seasonal
variability, this requires adjustment of the
corresponding absolute and conditional
distributions.

8. Estimates of the highest waves, which are
obtained using long time series at individual
locations, are random values. This review
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INTRODUCTION

Wind waves belong to a high-frequency type of
geophysical oscillations, and their characteristic
periods are of the order of seconds. Long–term
variations of wind wave field statistical parameters
are produced by modulation of their generation
conditions. The strongest manifestations are on
the synoptic temporal scale, but significant scales
of such variability also include annual, inter-annual
and longer variations.

If wind wave generating conditions are constant,
wind waves can be considered a quasi-stationary,
small-scale geophysical process. For the deep sea
case, the wave heights h obeys the Rayleigh
distribution

(I.1)

with h  denoting mean wave height.

Forristall [Forristall, 1978] proposed another
distribution, which is in frequent use now:

(I.2)

Here h6.1hs =  is the so-called “significant” wave
height. For a record consisting of n waves, it is
equal to the average height of the one-third highest
waves. After normalizing with respect to the zero-
order moment of the spectrum m0 the above
distributions (1.1) and (1.2) read as follows:

                                                                    ,

Comparison of these distributions shows that they
are close for small probabilities. At the same time,
the relation (1.2) predicts somewhat smaller values
of hmax for higher waves.

For example, the Forristall relation results in an
estimate of the highest wave in a thousand waves,
which is equal to 0.907 of the estimate obtained
with the Raleigh distribution. Wave heights in a
sequence are statistically connected, and their
correlation function is as follows:

(I.3),

where D denotes the process variance, α is the
decrement, and τ is the time lag.

The most fundamental starting point for derivation
of equations governing the wave spectrum
evolution is the equation for the conservation of the
wave action density N (see e.g., [Komen et al.,
1994; Lavrenov, 1998]):
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N is a function of latitude ϕ, longitude θ, wave
number k, angle β between the direction of wave
propagation and the parallel, angular frequency ω,
and time t. In the deep sea case the source
function GS is represented as the sum of three
terms:

Gin parameterizes spectral wave energy generation
by the wind, Gds is the wave energy dissipation,
and Gnl represents the effect of weak nonlinear
interactions on the wind wave spectrum change.

Present spectral wind wave models based on
equation (1.4) are rather well developed. They
incorporate a representation of all significant
mechanisms affecting the wave spectrum evolution
and are quite sophisticated numerically. Being
forced by wind data (or atmospheric pressure), and
data on boundary layer stability, the models
compute the two dimensional (with respect of
frequency and direction) spectrum S (ω, β ) at
nodes ir

"
of the numerical grid at times tj.

For the statistical analysis of long term series, we
will use in this study the results of hydrodynamic
model simulations. The basic variable will be mean
wave height 0m2h π= , where m0 is the zero-
order moment of the two-dimensional spectrum,
i.e.

∫∫= βωβω dd),(Sm0

at fixed locations ri. The simulations were
conducted at the Arctic and Antarctic Research
Institute under the supervision of Dr. Igor V.
Lavrenov. Another source of input data will be
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long-term synoptic wind wave observations th  at
automated buoys in several areas of the World
Oceans [Buckley, 1988; Boukhanovsky et al.,

2000] and estimates  2
sw

2
ws hhh += from visual

ship observations. Here hws and hsw are wind sea
and swell heights, respectively.

Time series of wind wave heights in mid-latitudes
and subtropical areas of the World Oceans make
alternating sequences of storms and weather
windows. We define a storm of duration ℑ  and
intensity h+ as a situation when the random
function h(t) exceeds a predefined value Z. The
period Θ during which the wave height is less than
this threshold will be called a weather window of
intensity h–.

Figure. I.1. Parameters describing storms and weather  windows

The parameter δ shows the asymmetry of the
storm: δ=(tp–tb)/ ℑ; tb, tp, te are times of storm start,
maximum development, and end, respectively.
Fig. 1 clarifies these definitions.

Wave observations or model simulation results can
be represented in a more general way by the log-
normal approximation of wave height distribution.
The corresponding distribution density function
reads as follows:

(I.5)

where 5.0h  is the median, and s−1 is the r.m.s.
deviation of the wave height logarithms. Fig. I.2
gives an example of wave height distribution
plotted against probability (I.5) of non-exceedance.

If a wave height series h(t) at times of synoptic
observations (i.e. with recording interval of 3 or 6
hours) is being considered as a sample of a
stationary random function,  then its auto-correla
tion function for the synoptic variability range can

Figure I.2. Combined (wind sea and swell) wave
height distribution for February (1) and August (2).

Log-normal probability plot. Ocean Weather
Station “Lima”: data of 1976-1980.
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also be written as (I.3), but with other parameters.
For example, from two to four consecutive
individual waves within the quasi-stationary period
are expected to correlate (the whole episode
lasting 10-20 seconds). Wave observations at
synoptic times are correlated, on average, for 1.5-3
days.

Wind waves also undergo an annual cycle. This
results in a corresponding variation of monthly
wave characteristics. For example, monthly mean
wave heights th  and parameters h0.5 and s of
distribution (I.5) vary in a cyclical mode from
season to season and show stochastic fluctuations
from year to year. Fig. I.3 shows the seasonal
variation of parameters h0.5 and s at Ocean

Weather Station “M” located in the Norwegian Sea.
Monthly parameters exhibit explicit seasonal
variability, and some stochastic fluctuations are
seen as variations of data in the same months of
different years. The January median (shown as a
horizontal line in boxes in Fig. 1.3.a) of h0.5
estimates is approximately 3.2 m. During individual
years it can vary from 2.2 to 4.0 m, making the
inter-quartile range of (3.5-2.8) = 0.7 m.  Such
rhythmic variations can be expressed
mathematically through a periodically correlated
stochastic process (PCSP) with mean m(t) and
variance D(t), which are periodic functions of time
with period T = 1 year. Its covariance function
K(ti,tj) = K(ti+T,tj+T) depends on both arguments.

Figura I.3.  Estimates of log-normal wave height distribution parameters h0.5  and s at Weather Station “M”

Figura I.4. Mathematicall expectation (a) an
centered with respect to the mean annu
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PCSP samples, if they are taken at intervals equal
to the correlation period T, produce stationary
random series. Fig. I.4 shows functions m(t), D(t)
obtained in experiments held in the Black Sea and
Baltic Sea.

The following stochastic models can be used for
the simulation of random series with a priori given
properties.

Auto-regression model for the quasi-stationary and
synoptic variability ranges

At the quasi-stationary and synoptic intervals of
variability the wave process is best described by
the stationary auto-regression  model AR(p) of
order p, namely

         ,t

p

1k
ktkt εξφξ += ∑

=
− ζ t = ƒ(ξt)          (I.6)

where φk are coefficients to be computed using the
correlation function Kξ(τ) as given by relation (I.2),
εt is white noise with a given distribution function,
which has to be compatible with the nonlinear
functional transformation ƒƒƒƒ(• ) of function ξt into,
respectively, the Rayleigh (I.1) or log-normal (I.5)
distribution of ζ t.

Stochastic model for sequence of storms and
weather windows

A stationary pulse-like random process is a good
model for sequence of storms and fair weather
intervals. A sample can be generated as follows:

(I.7)

where ℑ j  and Θj  are, correspondingly, the duration
of the storm and the weather window (with
threshold value Z),

( ) ( )
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h+, h−  are the highest wave height in storm and the
minimum wave height during the weather window.
Function u(t) prescribes the shape of the non-
dimensional impulse. The triangular shape of this
function
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serves as a good first approximation. Parameter δ,
as seen from fig. I.1, defines the asymmetry of
function u(t). If δ=0.5, the function is symmetric.

The actual generation of a series of random storms
and weather windows is based on the Monte Carlo
approach. First, the distribution function FΞ(⋅) and
the matrix co-variation function KΞ(τ) are specified
which fit the set of four random values Ξ~(h+, ℑ , h−,
Θ) or time series Ξt. Secondly, a non-dimensional
storm shape function u(t) is chosen. Finally, an
ensemble of storms and weather windows is
generated numerically.

Stochastic model for extra-annual rhythms

This model is written as follows:

(I.8)

Here m(t) and σ(t) are periodic functions, and  ξ t is
a non-stationary process AP(p) so that

(I.9)

Coefficients φk  (t)= φk (t+T) are periodic functions of
time.

A model that is capable of describing the year-to-
year variability of monthly mean wave heights will
therefore require twelve values of m(t) and 78
values of K(t,τ). It is possible to reduce the number
of dimensions by considering the following
representation of PCSP:

(I.10)

Here ηk(t) are stationary random processes (com-
ponents) with mathematical expectation mk and co-
variation function Kk(τ) that can be obtained by
expressing functions m(t) and K(t,τ) as Fourier
expansion series.

Relation (I.10) resembles a Fourier series
expansion of ζ(t). However, both the coefficients
and basis functions in it depend on the time
variable, and hence (I.10) is not a Fourier
expansion. A simpler model for PCSP can
therefore be obtained by expanding the function
ξ(t) for each annual interval, as follows:

(I.11)

where  ak and bk  are random values, and q is the
order of the model.

For a stationary process it is possible to suppose
that values ak and bk are independent, while for a
non-stationary process they will be dependent.
Table I.1 gives average values of means (mak

, mbk
)

, variances (Dak
, Dbk

), co-variation Kak,bk
, and

correlation ρak, bk
 for coefficients of the model of

annual rhythms. Hence, instead of model (I.8-I.9)
with 90 parameters, a simpler model (I.11) with 20
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parameters (see Table I.1) may be used. Monthly
mean values of wave heights in the Black Sea
were used for the computations. Corresponding
values of m(t) and D(t) are shown in Fig. I.4.
Coefficient a0 in the table is equal to the annual
average wave height. Coefficients a1, a2
correspond to the cosine component of the annual
and semi-annual harmonics. Correspondingly, b1
and b2  correspond to the sine component. It
becomes obvious from the table that ak and bk are
strongly correlated. For example, the correlation
coefficient between ao and a1 is 0.66.

All above models make it possible to describe wind
waves as a multi-cyclic, multi-modulated random
process. The multi-cyclic behavior of waves
reflects the co-existence of sea and swell in the

combined wave field. Multi-modulation is related to
synoptic, seasonal, and extra-annual variability of
the averaged wave parameters. Hydrodynamic
properties of wind waves can be simulated by
models based on equations for wave action
density such as (I.4), and models (I.6) – (I.10) are
available for the statistical description of the wave
field.

At the same time, many practical computations of
extreme wave height hmax, for example offshore
and shelf engineering applications, employ the
assumption that wave height series is a sequence
of random values. The first approach of this kind is
called the method of initial distribution. It is
described in the following section.

Table I.1.
Statistical parameters of coefficients ak, bk of monthly mean wave height rhythms model (I.11).

The Black Sea

Parameter m,cm D, cm2 Kak,bk (cm2) and ρρρρak, bk

a0 a1 b1 a2 b2

a0 80 22 1 0.66 0.54 0.22 0.60
a1 19 42 20 1 0.21 0.65 0.47
b1 12 17 11 6 1 -0.26 0.52
a2 2 39 6 26 -7 1 0.15
b2 4 19 12 13 9 4 1

   Note: co-variation  Kak,bk is given below the diagonal and correlation coefficient ρak, bk is given above the diagonal.

---oooOooo---
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CHAPTER 1

Initial Distribution Method (IDM)

This method estimates the extreme wave height
hmax of a specified return period as the quantile hp
of the wave, height distribution F(h) with probability
p. Provided the distribution of individual wave
heights during the quasi-stationary interval obeys
equation (I.1), then

(1.1)

For p = 0.001 we obtain hp = 2.97 h . Thus, the
height of wave, which is the highest in a thousand
waves, is expected to be almost three times larger
than the mean wave height h . Using
approximation (I.5) of long-term wave height
distribution, the quantile with probability p can be
computed as follows:

(1.2)

where Up is the quantile of the standard normal
distribution N(0,1). Here quantile hp should be
understood as the wave height which is likely to be
observed once (at the standard synoptic
observation times) in T years.

In applied studies, the period T is called “return
period”, and the corresponding probability is
defined as

where ∆t is the interval (in hours) between
subsequent observations (say, 6 hours). Then we
get p = 0.000684/T. If ∆t = 3 h, we get
p = 0.000342/T.

Table 1.1 shows values of hp corresponding to
different choices of ∆t and T for h0.5 = 1.0 and
s = 2.0 in distribution (I.5). It can be seen that the
wave height estimates do depend on the recording
interval.

Table 1.1
Estimated 1-year and 100-year return period wave heights at synoptic observation times.

Computations for log-normal distribution with h0.5 =1.0 m and s = 2.0 and
with three record intervals of 3, 6, and 12 hours

hmax / h0.5Number of observations
per day ∆∆∆∆t, hour T = 1 year T = 100 years

8 3 5.5 9.4
4 6 5.0 8.8
2 12 4.5 8.1

There are two traditional data sources for the
determination of the wave height distribution F(h).
Historically, visual observations onboard ships and
at the Ocean Weather Stations were the basis for
such calculations.

At present the data are mostly provided by
instrumental wave observations from automated
buoys and through numerical simulations of
waves. Regardless of the source of information,
the initial distribution method leads to some
ambiguity in the estimates of the hmax using
quantiles (1.1,1.2).

If relation (1.2) is used in (1.1) as an estimate for
h , then the distribution F(h) of all individual wave
heights h during T-year long interval can be
represented as the combined distribution

(1.3)

with )h,h(G  being wave height distribution (I.1)

over the quasi-stationary interval and ( )hf  being
the long-term (climatic) probability distribution of
mean wave height  (I.5).

The average number of individual waves N in such
a population depends on the mean wave period τ .
To estimate it, we can assume that the joint
distribution of wave heights h and periods τ is
governed by multiplication of the individual log-
normal distributions

(1.4)

with parameters h0.5 and s for the marginal
distribution f(h) of wave heights and with
parameters τ0.5(h) and sτ(h) for the conditional
distribution of wave periods f(τ|h) for a given wave
height h. Then the probability that hk≤h<hk+1 and τs
≤τ<τs+1 is equal to

( )p1ln4hhp −−=
π









=

s
U

exphh p
5.0p

T36524
tp

⋅⋅
= ∆

( ) ( ) ( )∫
∞

=
0

, hdhfhhGhF

( ) ( ) ( )hfhfhf ττ =,
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and the random number of such waves mks=pksN is
characterized by following the binomial distribution
(see Lopatoukhin, Lavrenov et al., 1999]:

( ) p1q,qpCmP mNmm
NN −== −        (1.5)

Here m = pN is the mean number and Npq   is
the corresponding r.m.s. deviation.

For small values of probability p, distribution (1.5)
tends asymptotically to the Poisson distribution:

(1.6)

which has mean value λ, and r.m.s. deviation λ .

For example, the median h0.5 of mean wave height
climatic distribution for the southern part of the
Baltic Sea is equal to 0.66 (m), and the shape
parameter s is equal to 1.81. For the wave periods
we have τ0.5=3.7(s) and sτ =3.4. Hence the mean
number of waves for a year is N = 8 400 000. The
probability pks that 1 ≤ h < 2 (m) and 4 ≤ τ < 6(s) is
0.11. Thus, using (1.5) we have m = pksN ≈ 924000
waves per year and σm = 910. For the probability
pks that 3 ≤ h < 6(m) and 6 ≤ τ < 8(s), which is
equal to 0.0000196, relation (1.6) predicts m = 165
and σm = 13 (waves).

The initial distribution method results are sensitive
to the variation of parameters in extrapolation
formulae (1.1) and (1.2). It is particularly sensitive
to variations of parameter s for small values of
probability p. Quite often the statistical distribution
of wave height in an observed sample does not
match closely relations (I.1) and (I.5). This results
in significant differences in estimates, which are
obtained with the help of various methods. For
example, if values of h and s computed using the
formula for statistical moments are, respectively,
h0.5=0.66 (m) and s=1.81, then the estimate of one-
hundred year return wave height in the Baltic Sea
is hmax = 7.3 m. If the median is the same but the

parameter s is determined using the formula for
quantile, which gives s(q)

*=1.95, then hmax=6.1 m.

The “true” distribution function F(h) is unknown.
We use the observation series to obtain an
approximation F*(h), the reliability of which
depends on the length of the series and the quality
of observations. Usually, the time series are long
enough. If, for example, the series is 30-40 years
long, and if observations are taken 4-8 times a
day, the total number of records is 50–100
thousand. Correspondingly, the method can
provide quite a narrow confidence range (provided
the approximated distribution is really close to the
true one).

For the above example the estimates h0.5=0.66
(m) and s=1.81 were obtained using a simulated
data series, which was 35 years long. The time
step was 6 hours. The total number of readings
was N = 51100. Thus, the standard deviation of the
estimate of s is τs=0.014. For σh0.5 the expected
deviation is as small as 0.002. Correspondingly,
the 90% confidence range for the one hundred
year wave height (hp=7.3 m), which is obtained by
extrapolation of distribution (I.4) up to probability
p=0.684⋅10–5, is very narrow, namely 7.2-7.4 m.

It is obvious that the initial distribution method
cannot, in principle, represent the true variability of
maximum wave heights. Even if we consider
approximation (I.1), and, particularly, (I.5) ideal, the
parameters s,h,h 5.0  that enter these relations still
remain random as they are affected by synoptic,
seasonal and extra-annual variability.  As a result,
one point (i.e. single-value) estimates of extreme
wave height have considerable inherent
uncertainty. Long-period variability also justifies the
use of wider confidence limits for interval
estimates.

Hence, marked sensitivity of the initial distribution
method to input data quality combined with
considerable uncertainties of estimates at small
probabilities, as well as adoption of some
assumptions regarding the possibility of combining
approximated distributions (I.1) and (I.5), suggest
that there is a need to further develop the method.

---oooOooo---
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CHAPTER 2

Method of annual maximum series (AMS)

This method defines hmax as the last term of the
ranked independent series of wave heights h. Thus
it is a random value with the distribution

(2.1)

which depends on the type and parameters of the
original wave height distribution Fh(x) and on the
number of data n. For large values of n, the exact
distribution (2.1) of independent, similarly dis-
tributed random values tends to one of the three
following asymptotic distributions:

(2.2)

(2,3)

(2.4)

It is possible to apply a nonlinear transformation to
variable x in distributions (2.2) – (2.4). Then,
depending on the value of γ the distributions will
converge to a single Generalized Extreme Value
(GEV) distribution (see Leadbetter et al., 1986).
Such a transformation is convenient if the type of
original distribution (2.1) is not known. Then the
selection of limiting distribution has to be made
using the series data (see Pilon, Harvey, 1993;
Hoybye, Laszlo, 1997).

If the original distribution Fh(x) is of exponential
type (such as normal, log-normal, and Weibull
types), the distribution (2.1) converges to double-
exponential distribution (2.2), known as first-limit or
Gumbel distribution, which most often reads as
follows:

(2.5)

Parameters a and b depend on n and Fh(x) as
follows

2.6

where f(b) is distribution density Fh(x) at the
point b.

For a quasi-stationary interval, and if the Rayleigh
distribution (I.1) is satisfied, the following relation
holds [Lopatukhin et al., 1991]:

(2.7)

If  n =1000, the median 5.0
~h  of distribution (2.5) is

equal to

(2.8)

and main quantiles are as follows:

(2.9)

This shows that the estimate of hmax, which can be
obtained using the  AMS (formula (2.8)), is biased
relative to the hmax estimate by the Rayleigh
distribution (

1000
1h = 2.97 h ). As a random value,

the estimate hmax should be located within the
limits (2.73 h ; 3.61 h ) in 90% of all cases (for
n=1000). Once in a hundred cases  the value of
hmax  can exceed 3.95 h .

For the log-normal distribution (I.5) with
parameters h0.5 and s, the parameters in
distribution (2.5) read as follows [Hirtzel, 1980,
Lopatukhin et al.,1991]:

(2.10)

The corresponding quantiles are

(2.11)

For example:

(2.12)

Let us consider a wave height series in the Baltic
Sea that contains four observations per day. The
distribution parameters are: h0.5=0.66(m) and
s =1.81. The median 5.0

~h of the annual maximum
distribution (2.5) with parameters a=1.76(m) and
b=3.29(m) is 4.1(m) The initial distribution method
would result in a one-year return period wave
height of 3.9(m). Thus the hmax estimate obtained
from distribution (2.5) with the annual maximum
series method is always shifted relative to the
estimate (1.2) in the initial distribution method.

The value hmax is random, and in a sample with
n =365⋅24/∆t records in 90% of cases it will take a
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value between 3.3 - 5.6(m), see (2.12). This
means that if observations are taken every 6
hours, and if h0.5 and s correspond to the basic
climatic distribution, the series of annual maximum
wave height hmax (recorded once at synoptic
observation times) will vary within these limits.

Evaluation of wave heights )(
max
Th  at T year return

period, is made using extrapolation of the
distribution (2.5). The following formula [Leadbetter
et al., 1986] is used:

(2.13)

Distribution (2.13) is of the same type as (2.5)
provided

(2.14)

Using (2.13) for the above case one can get the
median for a hundred year return wave )100(

5.0
~h = 6.8

m. If the initial distribution method was used, the
estimate would be 7.3 m.

For the AMS method, the extrapolation to long
return periods can be justified only for periods
(number of years) T*, which do not exceed 3-4
lengths of the original data series used for
evaluation of the distribution parameters. The
estimates of wave heights with return periods of T
years, for T>T*, can be understood as bounds of
corresponding probability interval for distribution
(2.13). For example, the 104 year return wave
height will be equal to the upper 1% percentile of
the probability range, which is computed using an
ensemble of one hundred series, each of them
being one hundred years long [Lopatoukhin,
Lavrenov et al., 1999].

Expressions (2.1), (2.7), (2.10), (2.13) are derived
assuming independence of random values in the
series. However, wave heights do correlate, both
within the quasi-stationary interval, and for series
made of synoptic time observations. Hence
estimates of hmax in the Annual Maximum Series
method should be corrected accordingly. The first
way of correcting them would be to turn to the
equivalent number of “conventionally independent”
observations:

(2.15)

ρ being the threshold correlation coefficient. If the
correlation is less than this threshold value, the
correlation [see expression (I.3)] can be
considered negligible. Parameter α is the
decrement in the correlation function (I.3).

This  approach can be used for first guess
estimates only because parameter α is mostly
chosen arbitrarily. Besides, the use of (2.15) is not
fully theoretically justified. The estimation of
parameters a and b in expression (2.5) from a
sample of annual maximum wave heights hmax is
used as a rule.

Fig. 2.1 shows a q-q (quantile – quantile) bi-plot of
the empirical distribution function F*(x), which was
computed using 35 annual wave height maxima
generated by a model [Boukhanovsky A.V.,
Lopatoukhin L.J., Rozhkov V.A. 1998]. Empirical
values (calculated from a sample) are shown along
the x-axis, and theoretical values are shown along
the y-axis. Such bi-plots will be used often in this
paper. The statistical background for such
presentations can be found elsewhere [Denby et
al., 1983]. A thin cloud of points along the diagonal
suggests that double exponential distribution (2.5)
is a good approximation.

Estimates of parameters a* and b* can be made
using methods of moments, quantile, maximum
likelihood [Boukhanovsky, Davidan et al., 1996].
Also it is possible to use the method of L-moments,
which was developed in [Hosking et al., 1985;
Hosking, 1988; 1989; 1990]. Each of these
methods uses different inputs for computation of a*
and b*. Correspondingly, statistical properties of
values a*, b*, (i.e. means and variances) will also
be different. For example, if we use the maximum
likelihood method for values  A=b, B=a-1 that would
transform (2.5) into

 ,          (2.16)

then we will get the following statistical
characteristics of parameters:

while the β% uncertainty limit for quantile *
ph  will

look as follows:

(2.17)

Here **** BABA ,, ρσσ  are r.m.s. deviations and
coefficient of correlation of estimates A*, B*,
γ = 0.577126, g=ln(−ln(p)), Uβ  is β% quantile of the
normal distribution,
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Thus, an Annual Maximum Method estimate hmax =
4.8 (m) of 35 year return wave height in the Baltic
Sea is covered by the 95% - confidence limits
interval from 4.4 to 5.2 (m).  A hundred year return
wave height, according to (2.13) is 

)100(
maxh =5.1 (m),

and it has a 95% - confidence limit range of 4.6-5.6
(m). The AMS methods uses data series made of
all annual wave height maxima.

Such series cannot be too long because we very
rarely have observations lasting more than 30 – 40
years. This is why the confidence limits range for
AMS hmax estimates is sufficiently broad.

Figure 2.1. Biplot of 35 annual maxima of wave height *
jh  and corresponding

 quantiles  hj  of distribution (2.5). The Baltic Sea

---oooOooo---
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CHAPTER 3

Joint distribution of wave directions and
heights

If a wave field is comprised of several wave
patterns, then each of the patterns /wind sea or
swell(s)/ can be described by a corresponding
wave height h, period τ, for example τ,h and
direction of propagation β.

The joint distribution density f(h, β) is used most
frequently for the probabilistic description of the
wave field. An example of corresponding
recurrence f(h,β)dhdβ (%) for the Baltic Sea
(autumn) is given in Table 3.1 and is shown in
Fig. 3.1.

The analysis of such joint distributions is specific
because (h,β) represents a system of random
values where h is a scalar value and β� is an
angular value. The coefficient of colligation Cf will
be used to check the hypothesis that random
values h and β are independent, as follows: Figure 3.1. Probability of wave heights by direction

The Baltic Sea

Table 3.1.
Joint  probability (%) of mean wave heights and directions.

The Baltic Sea. Autumn. Total number of observations N=12770.

h, m N NE E SE S SW W NW f(h) dh

0.0-0.5 1 1 2 3 4 4 3 1 19
0.5-1.0 4 3 3 5 7 10 11 6 49
1.0-1.5 1 <1 1 1 1 4 6 3 18
1.5-2.0 <1 <1 <1 – <1 1 5 2 9
2.0-2.5 <1 – – – – <1 2 1 3
2.5-3.0 – – – – – <1 1 <1 1

>3.0 – – – – – – <1 <1 <1
f(β)dβ 6 4 6 9 12 20 29 14 100

(3.1)

Also we will use regression lines:

(3.2)

(3.3)

and scedastic (conditional variance) curves:

             ,            (3.4)

(3.5)

According to [Mardia, 1972] the regression is
estimated as the mean direction

(3.6)

while expression

(3.7)

with

gives an estimate for conditional variance (3.5).
The value

( )∫
∞

=
0

b|h dh|hfhm β

( )∫=
π

β βββ
2

0
h| dh|fm

( ) ( )∫
∞

−=
0

2
|h|h dh|hfmhD βββ

( ) ( )∫ −=
π

ββ βββ
2

0

2
h|h| dh|fmD

[ ]C
Sarctan=β

R1D −=β

,sin
n
1S,cos

n
1C

n

1i
i

n

1i
i ∑∑

==

== ββ 22 SCR +=

( )
( ) ( )β

β
fhf
,hfC f =



-   14   -

(3.8)

that follows from an analogy with a wrapped
normal distribution can be used as a measure of
spreading of angular value β. It is similar to the

r.m.s. deviation. Tables 3.2 and 3.3 are based on
the data from Table 3.1, and present conditional
means /see (3.2),(3.3)/ and variances /see
(3.4),(3.5)/ for height of waves from different
directions.

Table 3.2.
Conditional means (3.2), variance (3.4), and r.m.s. deviation of wave height h for given direction β

β N NE E SE S SW W NW
mh|ββββ, m 0.8 0.7 0.6 0.6 0.6 0.8 1.3 1.1
Dh|ββββ, m2 0.1 0.1 0.1 0.1 0.1 0.2 0.5 0.4
σσσσh|ββββ, m 0.4 0.3 0.3 0.3 0.3 0.5 0.7 0.6

Table 3.3.
Conditional means (3.3), variance (3.5), and r.m.s. deviation of wave direction β

for given wave height h

h, m 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75
mββββ|h,

0 189 239 264 273 276 275 275 275
Dββββ|h, rad2. 0.60 0.68 0.38 0.13 0.09 0.05 0.03 0.03

σσσσββββ|h,0 78 86 56 30 25 18 14 13

The computations show that values of cf differ from
1, lines of regression (3.2) and (3.3) are not
parallel to co-ordinates, conditional variance  Dβ|h
differs from the absolute variance Dβ = 0.59
rad2,.σβ = 76°. This suggests that the two-
dimensional distribution density f(h,β) has to be
approximated by expression

(3.9)

Among existing approximations of f(β h) the most
useful is the Mises distribution. Its mean µ and
scale k parameters depend on wave height h:

(3.10)
where

Here

(3.11)

is the modified first type zero-order cylindrical
function. Variation of parameters µ and k makes it
possible to reconstruct all angular distributions,
from uniform to a narrow one.

Comparisons of f(h,β) and approximation (3.10) for
parameters µ and k taken from Table 3.4 showed
satisfactory agreement.

We can use the distribution F(h|β) for any given β
to estimate hmax with the help of both methods of
initial distribution and the annual maximum series.
The absolute wave height distribution is a mixed
distribution of waves coming from different sectors
of  wave directions βi:

      .                (3.12)

Here γi are weight coefficients, which meet the
compliance condition that 1

i
i =∑γ . Computation

of extreme values for individual directions is then
made by simple adjustment of omni-directional
wave height distribution f(h) with distribution of
wave height for given directions f(h|βi). Wave
height h(T), expected to occur once in T years for
direction β will be equal to a certain quantile of the
omni-directional distribution f(h).

Table 3.5 provides estimates of a hundred year
mean wave height, both directional and omni-
directional, based on data from Table 3.1.

Table 3.4.
Parameters µ and k of conditional distribution of wave heights (3.10).

Data from Table 3.1

h, m 0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.0–4.0
µµµµ, 0 189 239 264 273 276 275 275
k 0.8 0.7 1.8 4.2 6.5 7.2 7.8
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Table 3.5
Directional and omni-directional estimates of one hundred year wave height.

AMS method. The Baltic Sea

ββββ N NE E SE S SW W NW omni-
directional

h(100), m 2.7 2.4 2.3 2.4 2.7 4.0 5.1 4.4 5.1

It is seen that the highest waves in the Baltic Sea
mostly propagate from the west. If traditional
computations of absolute and conditional
distributions are used, a discrepancy often occurs
that the omni-directional wave height estimate

exceeds the maximum (over all directions)
estimate computed taking into account directional
distribution [Proceedings, 1986]. Estimates of long
return period wave heights, if they are based on
relation (3.12), eliminate this typical discrepancy.

---oooOooo---
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CHAPTER 4

MENU ( MEan Number of Up-crossings) Method

The highest wave hmax is observed when a storm is
passing the point of observations. To estimate it
we have to consider waves as a random process.
Let us denote the wave height series as ξ(t). A
storm takes place when ξ(t), t∈ [tb,te) exceeds Z,
and hmax is the maximum value of  ξ(t) ≥ Z within
interval (tb,te), see Fig.I.1.

The function ξ(t) can cross level Z having positive
ξ'(t) > 0 or negative ξ'(t) < 0 derivative. At the
beginning (index b) and ending (index e) times we
have ξ'(tb) > 0, ξ'(te) < 0.  At a point of maximum

and minimum function ξ(t) has zero derivative
ξ'(t )= 0, and it reaches its maximum at time t if in
the vicinity of this value of t the second derivative
is negative, ξ"(t) < 0. Thus it is possible to employ
the theory of impulses (see [Tikhonov, et all,
1987]) to derive the distribution of extreme values
of random process ξ(t). To do so, we need to know
the joint distribution density f(ξ,ξ', ξ")[Rice, 1944].

For a stationary Gaussian process ξ(t) with
mathematical expectation mξ=0 and co-variance
function ( ) ( )τρστ ξξ

2K =  this distribution reads as
follows:

(4.1)

where 2
1σ and 2

2σ  are variances of ξ'(t) and ξ"(t), and  04
1

2
2

2 ≥−= σσσν ξ .
It follows from (4.1) that maximum ξm  distribution density reads [Longuet-Higgins, 1957]

(4.2)

where Φ(x) is the probability integral.

A random process η(t) obeying the log-normal distribution (I.5) can be examined in terms of functionally
transformed Gaussian process variables:

η(t) = exp[ξ(t)],             ln η(t) = ξ(t)     (4.3)

Then the maximum distribution density ηm will be:

(4.4)

Where    
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η′′  are second and fourth derivatives

of function Kη(τ) at τ = 0.

The largest maximum amongst all ξm (or ηm) is
called the absolute maximum and we consider it
equal to hmax. The distribution of hmax tends to the

same three types of distribution (see (2.2-2.4)) as
does the distribution of the maximum value in a
sample of independent random values [Leadbetter
et al., 1986].

Another possible approach to determination of hmax
for random process ξ(t) uses dependence of value
h on the time t needed to reach this value for the
first time (i.e. the first up-crossing). A formal
solution to this problem was derived in 1933 by
L.S. Pontriagin  for the Markov processes only.
Nevertheless, there are some relations between
the mean value of t and other characteristics of
extreme values such as the average number of up-
crossings of value h by function ξ(t). Athanassoulis
et al., [1995a, 1995b] used these relations to
estimate hmax on the basis of time series of wave

( )
( )

( )[ ] ( )






 ′

−′′+′′+−=′′′ 2
1

2
22

1
22

2
1 2

22
2
1exp

2
1,,f
2

3 σ
ξξσξξσξσ

ννσπ
ξξξ ξ

( )































−−





−= m

2
1

2

2
m

m
2

2

2
12

m

2
2

21
m 2

exp2
2

exp
2

1f ξ
νσ

σΦ
σ
ξξ

σσ
πσξ

ν
σ

σσ
ν

πσ
ξ

ξξξξ

( ) ( )
















 −





−−+





−= 2m

2
m

2
m2

22
m

2

m
m 1ln

2
lnexpln12

2
lnexp

2
1f ν

σν
ηΦ

σ
η

σ
ηνπ

νσ
ην

πση
η

( ) ( ) ( )( )[ ]
( ) ( )[ ],1expexp,

2
expm

;1expmK

222
2

22

−=





=

+=+= 2

σσσσ

τρστρστ

ηη

ξηηηη



-   18   -

( )
( )

( )
.;

12
1Q;xmmD

;
2

mmm2mx2mxE;
2

C

XX

XX
2
XXXX

2
XX

2
X

2
X

XX
*2

XXX

2
XX

2
X

2
X

22
XXXXX

*2
X

2*

2
XX

2
X

2
X

2
X

′

′

′′′′

′′

′′

′′′

′′

=
−

=
−

−′−=

−
′+′−′+−=

−
=

σσ
σρ

ρσπσσσσ
σσσ

σσσ
σσσσ

σσσ
σ

heights taken at standard observation times. The
series was represented as periodically correlated
stochastic process (PCSP):

(4.5)

where the first expansion coefficient represents the
linear trend, m is seasonal variation of the
parameter X mean value, s is the seasonal
variation of standard deviation, and W is a
stationary random process (in a general case it is a
non-Gaussian process).

This method is called MENU (MEan Number of Up-
crossings). It relates extreme value of any wind
wave parameter possible once in T years to a
certain value x*. At this value the mathematical
expectation M(x*; t, t+T), i.e. the mean number of
up-crossings of value x* by random process X(t,γ)
during time interval [t; t+T], will be equal to one.
Here γ is a sample number such as, say, 1960-
1999. For brevity we shall omit parameter γ in
further formulae. The process X(t) can represent
any random parameter related to waves such as
height, period, any other distribution parameter,
etc. Nevertheless, the most useful application of
this method is associated with processing  of wave
heights or any function related to wave heights
(e.g. wave height logarithms).

The function M(x*; t1, t2) can be represented
as follows:

(4.6)

and therefore its computation requires knowledge
of ( )yxf tt ,

21 , , i.e. the joint distribution density of
the process X(t1) and its derivative Y(t2), which, in
accordance with (4.5), could be expressed through
distribution density f W,W'.

The approximation of f W,W' (x,y) in [Athanassoulis
et al., 1994] was based on the Plackett distribution
[Plackett,1965]

(4.7)

where parameter ψ is related to the correlation
coefficient ρxy via the following formula:

(4.8)

Correlation coefficient or parameter ψ could be
estimated directly from the data or in accordance
with maximum likelihood method.
Hence, the MENU method determines extreme
values through solving the equation

(4.9)

To solve the integral equation (4.9) in a general
case, requires integration with respect to time, for
rather long ranges, and taking an improper integral
with respect to the other variable X. In practice,
however, a simplified approach is used, which
supposes that W is a Gaussian random process
[Athanassoulis et al., 1995a].

This approach makes it possible to take the
integral with respect to variable X analytically. The
simplification is valid if the original wave height
time series, which is used to compute the extreme
wave heights, is distributed log-normally with
sufficient accuracy. This is particularly important for
the “tail” of the distribution.

Then, assuming that X(t) = ln(h), equation (4.9)
takes the following form [Athanassoulis et al.,
1995a]:

(4.10)

where

In the above relations x* denotes the up-crossing
level (the wave height) occurring once in time T.
Functions σ and m are, respectively, the standard
deviation and mathematical expectation that can
be obtained from (4.5) using an approximation with
low order Fourier expansion. The standard error

function is called “erf”, as usual.  Therefore, if we
have any multi-year time series {X(t), 0≤ t ≤Tend}
where X may be h(t) or ln(h(t)+c), then the MENU
method can lead to the following simplified
procedure of estimation of return period T
associated with the level x*. The procedure
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involves several steps [Athanassoulis,1995,
Stephanakos, 1999]:

1. Reindexing of X(t) series as follows:

    ( ){ }ααα Tt0,J,,2,1j,t,jX ≤≤= !

    αT = 365 × 24 (hours) is one year

( ) tTK,,2,1k,t2
1ktk ∆∆ αα ==−= !  where ∆t

is the sampling interval.

2. Making the time series trend-free

a) Obtaining the sequence of mean annual
values

b) Fitting the data points to linear function

c) Deleting the trend ( ) ( ) ( )tXtXtY tr−=

3. Derivation of seasonal characteristic

(4.11)

4. Low-order Fourier series representation for m
(order µ – 1) and s (order σ – 3). See Fig.4.1.

5. Time series decomposition in accordance with
(4.5)

(4.12)

6. Obtaining the joint probability density f(X,X')

(4.13)

Considering the density of (W,W'), there are
several ways to model it:

a) Use bi-variate Plackett model (4.7) - (4.8)
with uni-variate marginal densities
estimated from the uni-variate samples of
W(t) and W'(t), respectively.

b) Use the bi-variate Plackett model with both
uni-variate marginals log-normal for the
joint density of (W(t), W(t+∆t)), and by
means of bi-variate linear transformation

W(t) = W(t); W'(t)=(W(t+∆t)-W(t))/∆t,

calculate the fWW'
c) Assume that the joint density WW

tttf ∆+, is a bi-
variate normal density, and, by means of
previous linear transformation, obtain the
density '

,
WW

ttf

7. Calculating the coefficients in (4.10) with the
help of (4.5), (4.13) and low-order Fourier
expansions for m and s.

8. Numerical solution of equation (4.10) for given
level X* that yields the return period T(X*).

Figure.4.1. Seasonal variability of ln h1/3 time series for the Baltic Sea.
(a) Seasonal mean value m(tα) and its 1st order Fourier representation (b) Seasonal standard deviation

s(tα) and its 3rd order Fourier representation. Axis of abscissa is annual time tα (6-hour intervals)
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CHAPTER 5

Peak Over Threshold Method (POT)

The Initial Distribution or MENU methods require
rather long data series for estimation of hmax . If the
number of years is denoted by n, and number of
observations per day is denoted by m then the
total length of the series will be N. For example, for
n = 30, m= 4, .44000365430 ≈⋅⋅=N  The Annual
Maximum Method (AMS) excludes from the
analysis those storms that are not the strongest in
a particular year but could be the strongest in other
years. This is one reason why the Peak-Over-
Threshold method is used in estimating the highest
wind waves [Muir L.R., El-Shaarovi, 1986]. The
method is based on studying the sample of hmax for
the k strongest storms observed during n years.
The selection of the k strongest storms requires
the biggest effort in POT and is its most subjective
procedure. As a rule, the first step is the selection
of a large number of storms, for which hmax is
determined. In the following step only the strongest
storms are considered. Usually, 20-30 storms are
taken for a 30-40 year long interval.

It is assumed in the POT method that there is no
dependence between wave heights in consecutive
storms (i.e. wave heights in different storms are
not correlated). Then the distribution function for
maximum wave heights can be written as follows:

(5.1)

where G(h) is the distribution for wave heights
exceeding a predefined threshold Z during a year

and pk is distribution within a year of the number of
storms during which maximum wave height
exceeded Z. The Poisson distribution (1.6) is
always used for pk for sufficiently large values of Z.

In a particular case, when one can clearly see that
storminess during the period of observations
underwent considerable year-to-year variability,
the geometrical distribution is a good approxi-
mation for pk:

(5.2)

where p0 is the probability of occurrence of years
when waves are below threshold Z.

If the case (h ≥ Z) is not rare (i.e. for small values
of Z), one can use for pk the  truncated normal
distribution:

(5.3)

with parameters λ, σ, c.

Table 5.1 gives, as an example, statistical
characteristics of number of strong storms in
various seas. They were derived with values of Z
that were equal to two-three times the annual
mean wave height.

Table 5.1.
Probability of occurrence pk (%), mean values of  k and r.m.s deviation σk

of the number of strong storms k in a year

pk, %
Sea, number of years

k=0 k=1 k=2 k=3 k=4 k=5 k σσσσk

Baltic Sea, 35 years 37 34 17 6 5 1 1.09 1.16
Barents Sea, 41 years 37 27 24 10 2 – 1.15 1.12
Black Sea, 35 years 23 26 31 9 6 5 1.66 1.42
Caspian sea, 39 years 46 21 28 5 – – 0.92 1.00

The table reveals marked inter-annual variability of
strong storm numbers. For example, in 46% of
years there were no strong storms in the Caspian
Sea. The two last columns in the table contain
values of k  and σk that are close to each other.
This means that the Poisson distribution is a good
approximation for this case.

Summing up the infinite series (5.1) for the
distribution of storm numbers (1.6), (5.2), and (5.3)
will lead, respectively, to

(5.4)

(5.5)
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(5.6)

For G(h) double exponential see (2.2) or Weibull,
see (2.3), distributions are used the most often, as
follows:

(5.7)

(5.8)

where A, B and C are parameters.

Substituting (5.7) or (5.8) into (5.4)−(5.6) one can
obtain at least six types of combined distributions.
The Poisson – Gumbel distribution shown in (5.9)
below is the most widely used.

(5.9)

It follows from (5.3)–(5.5) that transformation of
G(h) into F(h) is relatively straightforward. At the
same time, the actual form of pk and parameters
(λ,σ) affect the value of quantile hp.  There is some
freedom in the interpretation of distribution G(h) as
probability P{h≥Z}.

One can include in the analysis all wave height
observations exceeding Z during a single storm
(i.e. when there are several cases where h ≥ Z
during a single storm) or, to represent the storm in
the sample by its single maximum wave height
h(t).

The difference between corresponding empirical
distributions (h > Z) and (h+ > Z) is shown in
Fig. 5.1 (q-q bi-plots of (5.7)).

Figure 5.1 Biplots of Gumbel distribution and observed distributions G(h) in storms with maximum
 wave heights exceeding Z = 2.0 m and Z = 1.0 m. The Baltic Sea.

Straight line shows the theoretical expression. Sign o shows all values exceeding a predefined threshold.
Sign + shows the single highest waves in a storm (i.e. one wave for a storm).

It can be seen that even for sufficiently small
values of Z  (Z = 1(m)) both distributions are
approximated fairly well by the Gumbel distribution
(except for the utmost “left tail” of data). In the case
when Function G(h) is determined using wave
heights at all synoptic observation times (i.e. more
than once in a storm), the “left tail” is given more
weight  and, hence estimates of long return period
waves are lower in comparison with G(h)
computed using the wave heights h+, which were
counted only once and therefore coincided with
maxima in the storms.

In computations of wave heights, the sample
should include only the highest waves in all
selected storms. The wave height hmax with return
period of T years is taken to be equal to the
quantile hp, p=(1–1/T)% of distribution F(h).

According to (5.9) this distribution depends on the
mean number λ of storms in a year, which, in turn,
depends on the threshold value Z. Thus, hp
(including hmax as its particular case) is a function
of Z. It follows from (5.9) that:

(5.10)

where N is number of storms in T years.
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The results of computations using relation (5.10)
are shown in Fig. 5.2.

Figure 5.2. hmax (at 100 year return period ) versus
Z for the Gumbel distribution

It follows from (5.10) and Fig. 5.2 that quantile hp in
the POT method decreases as Z  increases.

Further, it follows from Table 5.1 that function pk in
relation (5.1) can be computed using the Poisson
distribution (1.6). Then it is possible to derive the
following relation between T and F(h):

(5.11)

The uncertainty range for estimate hp computed
using relation (5.10) can be derived via (5.11) and
(5.9). It is related to the random nature of
estimates A* and B* in (5.7) and (5.9) and, as well,
to the same random nature of estimates λ* in (1.6).
This means that the POT method gives the “true”
value of hmax that is located in a two - dimensional

area of uncertainty range. The first co-ordinate of
this area characterises the possible range of
estimates hp* in terms of wave height (due to
uncertainty in A* and B*) while the other is related
to uncertainty in p* (due to variations of λ* resulting
from using data for a limited number of storms).
These areas are shown in Fig. 5.3.

Thus, the POT method estimates depend on the
choice of approximations for corresponding
distributions. Of course, estimates obtained using
other methods do also. However, unlike other
methods, in the POT approach the uncertainty is
connected both with the wave height *

ph  and
return period. For example, the 25 year wave
height estimate in Fig.5.3 is found to be in the
range of 7.2 – 8.4 (m), and return period is in the
range of 20-45 years.

Figure 5.3. Joint uncertainty ranges of POT
significant wave height estimates at return periods

of 25, 50, and 100 years.

---oooOooo---

3.50 3.90 4.30
5.60

5.80

6.00

Z
  (m)

hmax, (m)
-Empirical data
-Relation

( )hF
1T

λ
=

0 5 10 15 207

7.

8

8.

9

9.

1

T

hS
T(



-   25   -

CHAPTER 6

Storms and weather windows

The synoptic variability of wind waves is traced
back to the frequency of passage of atmospheric
disturbances, their strength, the duration of their
action on the water surface and the geographic
properties of the area. The variability manifests
itself as a sequence of alternating storms and
weather windows, which can be represented
formally (see Fig. I.1) as a sequence of positive (a
storm) and negative (a weather window)
fluctuations of the random process ξ(t) relative to
some fixed value Z.

Let h(t) denote wave heights measured at synoptic
observation times. ℑ  and Θ denote the duration of
a period when wave height deviations from Z were
positive and negative, respectively.

Then the maximum wave height during the storm
is

(6.1)

The minimal wave height during the weather
window is

(6,2)

A system of the four interconnected random
variables Ξ = (h+, h–, ℑ , Θ) can be used to
parameterize the pulse-like stochastic process
shown in fig. I.1.

Table 6.1 gives a description of the data series that
were used to study the synoptic variability of wind
wave heights [Rozhkov et al., 1999;
Boukhanovsky, Lavrenov et al., 1999].

Table 6.1.
Data used in computation of storms and weather windows

Parameters of distribution (I.5)

Sea ϕϕϕϕ , λλλλ Depth,
(m)

Record
Length,
years

Annual
means Winter Spring Summer Autumn

h0.5,
(cm) s h0.5

(cm), s
h0.5

(cm), s
h0.5

(cm), s
h0.5

(cm), s

Baltic 55°20'
20°30' 30 1957-1991 66 1.8 77

1.7
60
2.0

55
2.3

75
1.8

Black 43°10'
34°00' 2200 1954-1988 73 2.5 92

2.1
73
2.9

60
3.8

72
2.8

Mediterranean 35°10'
35°05' 1070 1980-1994 60 2.6 75

2.2
65
2.8

51
4.3

54
3.2

Barents 71°05'
35°09' 180 1980-1989 119 2.0 143

2.2
115
2.1

97
2.2

129
2.1

For h(t) a multi-year long (10-35 years) time series
of mean wave height was taken as simulated by a
wave model. The model was driven at regular
synoptic times by gridded atmospheric pressure
fields. The computations represented a variety of
physiographic conditions in internal and marginal
seas.

Table 6.2 provides mean (m) and root mean
square deviation (σ) values of four-variable random
functions Ξ that were computed using samples
from a sequence of storms (from 150 to 1000
storms).

The threshold value Z was taken, correspondingly,
equals to quantiles h0.5, h0.25, h0.75, h0.9. The
breakdown of values is done by seasons, so that
synoptic variations of the wind wave fields are
described taking into account the annual cycle.

It can be seen from the table 6.2 that for Z=h0.5 the
average storm duration ℑ  is two days, while the
average duration of weather window Θ is 2−3
days. For larger values of Z, such as h0.75, ℑ  is
reduced to one day, and Θ increases.

Random functions ℑ  and Θ represent duration of
over-shots and under-shots. Therefore their
distributions should asymptotically tend to the
exponential law [Leadbetter, 1986]:

(6.3)

Figs. 6.1 and 6.2 depict quantiles of distributions
F*(ℑ ) and F*(Θ) as the q-q bi-plots. It can be seen
that the hypothesis that F*(x) belongs to a class of
exponential distributions is confirmed. Hence m
and σ should be nearly equal (as seen from Table
6.2). Table. 6.3 gives correlation coefficients
between different random functions in system Ξ.
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Table 6.2
Estimates of means (m) and r.m.s. (σ of the highest mean waves h+ in storms, lowest mean waves h– in

weather windows, duration of storms ℑ � and duration of weather windows Θ for thresholds Z that
correspond to different quantiles of wave height climatic distributions (left column)

Z, h+, (cm) h–, (cm) ℑℑℑℑ , (hours) ΘΘΘΘ, (hours)% (cm) m σ m σ m σ m σ
N

WINTER (XII,I,II)
Baltic sea

25% 53 124 75 37 12 72 79 31 32 653
50% 77 145 73 43 17 55 56 59 60 615
75% 114 185 66 54 30 39 37 111 125 434

Black sea
50% 92 175 76 61 17 46 38 58 57 656
75% 126 200 72 67 25 34 28 92 95 517

SPRING (III,IV,V)
Baltic sea

25% 43 92 52 32 9 70 76 28 26 793
50% 60 105 49 40 15 40 41 57 60 792
75% 83 131 51 40 21 34 33 130 148 482

Black sea
50% 73 110 49 55 11 37 40 61 62 794
75% 91 141 54 56 18 33 34 159 188 409

SUMMER (VI,VII,VIII)
Baltic sea

25% 42 80 34 32 10 61 59 30 30 852
50% 55 84 32 36 12 43 42 42 43 915
75% 74 104 32 38 18 31 27 115 126 518

Black sea
50% 60 80 17 49 11 39 39 61 71 806
75% 72 88 17 52 15 28 26 120 158 558

AUTUMN (IX,X,XI)
Baltic sea

25% 51 117 71 37 11 75 88 33 30 704
50% 75 139 68 44 17 56 61 64 70 623
75% 109 173 63 54 27 43 39 106 131 480

Black sea
50% 72 110 45 55 13 38 36 59 62 751
75% 91 141 47 56 18 34 28 132 146 393

Figure 6.1. Empirical distribution of storm duration
F(ℑ ) /quantile bi-plot of exponential distribution

(6.3)/. The Baltic Sea.

Figure 6.2. Empirical distribution of weather
window duration F(Θ) /quantile bi-plot of

exponential distribution (6.3)/. The Baltic Sea.
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Table 6.3
Correlation coefficients ρ between impulse parameters

Values (h+,h–) (h+,ΘΘΘΘ) (h–,ℑℑℑℑ ) (ℑℑℑℑ ,ΘΘΘΘ) (h+,ℑℑℑℑ ) (h–,ΘΘΘΘ)

ρρρρ -0.1÷0.15 -0.15÷0.05 -0.1÷0.1 -0.1÷0.1 0.5÷0.8 -0.55÷-0.7

Hence, in the first approximation it is possible to
consider parameters (h+, h−), (h+,Θ), (h−,ℑ ), (ℑ ,Θ)
independent while parameters (h−, Θ), (h+,ℑ ) are
dependent because their correlation coefficient is
in the range of 0.5−0.8.

Hence, the four-dimensional distribution F(h+, h−,
ℑ  , Θ) can be expressed as a product of two two-
dimensional distributions F(h+, ℑ ) and F(h−,Θ),
each of them being equal to

(6.4)

i.e. to multiplication of the marginal distribution F(x)
and conditional distribution F(y|x) where x = {ℑ ,Θ}
and y = {h+, h−}.

It follows from definitions (6.1) and (6.2), that the
values h+ and h– are extreme values in a sample,
so the asymptotic distributions of F(h+) and F(h– )
are close to relations (2.2) - (2.4).

For example, the distribution of h+ should
asymptotically tend towards

(6.5)

where A(ℑ ) and B(ℑ ) are parameters depending on
the conditional moments m(ℑ ), σ(ℑ ) via the
following relations

(6.6)

Empirical conditional distributions F(h+|ℑ ) are
compared with approximation (6.5) in Fig. 6.3. It
can be seen that approximation (6.5) is
acceptable. Parameters A and B for various seas
are presented in Table 6.4.

In [Angelides et al., 1981; Boukhanovsky,
Lopatoukhin, Ryabinin, 1998] distributions of h+ are
approximated using a family of 3-parameter
Weibull distributions

(6.7)

where the third parameter Z determines the
threshold, and two first parameters A and B are
estimated using data in the sample. In those
papers a constant value Z=1.0 m was adopted for
all seasons. Distribution (6.5) with parameters A
and B from Table 6.4, which are dependant on
season, function ℑ , and on variable Z, is more
accurate than the previous approximation (6.7).

Figure 6.3. Empirical conditional distribution h+ (m) of highest waves in storms of different duration
ℑ /quantile bi-plot of distribution (6.5)/, a: ℑ  ≤ 50 hours, b: 50 < ℑ  ≤ 100 hours. Baltic Sea.
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Table 6.4.
Parameters A and B of distribution (6.5) for cold and warm seasons and various seas

Winter Summer Winter Summerℑℑℑℑ ,
(hours) A, (m) B, (m) A, (m) B, (m) A, (m) B, (m) A, (m) B, (m)

The Black Sea The Mediterranean Sea
0-25 0.19 0.24 0.06 0.05 0.12 0.17 0.04 0.05
25-50 0.51 0.61 0.11 0.12 0.43 0.48 0.09 0.12
50-75 0.60 0.53 0.10 0.12 0.56 0.66 0.13 0.12
>75 0.71 0.60 0.08 0.19 0.50 0.37 0.09 0.08

The Baltic Sea The Barents Sea
0-25 0.18 0.19 0.07 0.10 0.22 0.15 0.14 0.12
25-50 0.42 0.48 0.18 0.23 0.45 0.57 0.33 0.39
50-75 0.54 0.57 0.16 0.29 0.52 0.51 0.53 0.34
>75 0.71 0.67 0.16 0.19 0.52 0.37 0.28 0.37

The Monte-Carlo approach and use of expressions
(6.3)-(6.5) make it possible to reproduce the whole
variety  of values of function Ξ:

(6.8)

Here { })k(
iγ denotes a system of four pseudo-

random numbers.

Using a sample of Ξ as a set of impulse
parameters in expression (I.7) one can get a
stochastic  model for a sequence of storms and
weather windows. Fig. 6.4 compares correlation
functions K*(τ) computed by empirical data and
impulse model (I.7) with the parameters estimated
by (6.8). The similarity between correlation
functions of the simulated process and empirical
data depends, in a general case, on the shape of
the impulse, the correlation  between parameters

Ξ = (h+,h−,ℑ ,Θ)t, and on the probability dis-
tributions Ξt, Ξs for various thresholds.

The correlograms in fig. 6.4 are computed using
the impulse process model (I.7) accounting for the
correlation (6.8) between parameters Ξ but not the
correlation between Ξt and Ξs of the sequence of
impulses. The figures show good agreement
between variances of the simulated and observed
process and times of the first zero level crossing.

Let us consider the dependence between two
consecutive impulses using a storm classification
based on instrumental wave observations in the
Black Sea. The data came from a directional wave-
rider installed at depth of about 85 m off the town
of Gelendzhik. The measurements were recorded
every three hours, and every hour during storms.
The duration of each record is 20 minutes. The
total duration of the series is approximately three
years, and it contains more than 6000 wave height
records ranging from 0 up to 8.5 m.

Figure 6.4. Estimates of wave height correlation function on synoptic time scales for Baltic (I)
 and Black (II) Seas. 1: impulse model , 2: empirical data
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The data analysis shows that storm shapes are
quite diverse and there are many ways to classify
them. The classification results will depend
significantly on the selection of Z. For smaller
values of Z, shapes are increasingly variable, while
for larger values of Z they become more uniform.

In [Boukhanovsky, Lavrenov, et al., 1999] five
storm classes were specified (see Table 6.5). The
dominating categories correspond to fully
developed seas (I), and to wind waves not fully
developed due to limitations of fetch or wind
duration (II). The categories III and IV correspond
to combined waves.

Storms of category V, which are defined as series
of storms with wave heights exceeding a threshold
Z, usually have the longest duration. Doubling of Z
leads to almost complete disappearance of storm
category V so that only four first categories remain.

B.V. Divinsky used methods of discriminant
analysis and came up with a more detailed
classification of storms than is given in Table 6.5.
He proposed eight types of storms for wave
heights exceeding mean seasonal wave height
h=Z and four types for wave heights exceeding
h=2Z and h=3Z. These are given in Table 6.6.
Further, B.V. Divinsky considered the
correspondence between each storm type and
dominating meteorological conditions. It is worth
mentioning that, in spite of differences in the
classification methods, the whole set of storm
shapes for wave heights exceeding h=2Z fell
almost similarly into four groups. Some differences
in percentage in Tables 6.5.and 6.6 are due to
varying criteria for attributing a storm to a certain
category.

Weather windows can also be classified similarly.
Table 6.7 shows a corresponding classification
proposed by B.V. Divinsky.

Table 6.5
A classification of storm shapes

Category Non-dimensional
shape

Threshold Z=1.0 ( )th  where  ( )th
is  seasonal mean wave height

Threshold Z=2.0 ( )th   where ( )th  is
seasonal mean wave height

abscissa is (t-
tb)/ℑℑℑℑ ,

ordinate is h/h+
P, % N

Wave
height  h

(cm)
Duration
S (hour) P, % N

Wave
height  h

(cm)
Duration  S

(hour)

I 50% 110

h95%=207
mh=61
σh=57

h5%=21

S95%=45.5
mS=11.0
σS=14.2
S5%=1.0

49% 78

h95%=241
mh=105
σh=59

h5%=44

S95%=25.8
mS=6.9
σS=8.0

S5%=0.7

II 15% 33

h95%=203
mh=84
σh=54

h5%=22

S95%=71.7
mS=28.7
σS=22.4
S5%=5.0

24% 38

h95%=267
mh=121
σh=63

h5%=43

S95%=38.3
mS=14.8
σS=10.3
S5%=1.8

III 6% 13

h95%=273
mh=138
σh=75

h5%=33

S95%=95.5
mS=44.9
σS=25.4
S5%=8.5

13% 20

h95%=207
mh=137
σh=61

h5%=66

S95%=36.0
mS=19.6
σS=11.0
S5%=5.0

IV 19% 41

h95%=273
mh=108
�h=63
h5%=44

S95%=82.5
mS=40.9
�S=23.3
S5%=12.2

13% 20

h95%=277
mh=134
�h=60
h5%=42

S95%=110.5
mS=34.0
�S=25.1
S5%=3.5

V 10% 22

h95%=197
mh=104
�h=64
h5%=31

S95%=135.
8

mS=70.0
�S=41.5
S5%=9.5

1% 2

h95%=181
mh=181

�h=1
h5%=180

S95%=184.5
mS=118.8
�S=65.7
S5%=53.1
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Table 6.6
A classification of storm shapes based on discriminant analysis

Threshold
1h 2h 3h 1h 2h 3hType Shape Description
Number of  storms %

I Monotonic increase and decrease of
wind 39 21 14 20.3 23.1 41.2

II
Stable wind at phase of maximal
storm development 40 39 4 20.8 42.9 11.8

III
Duration of increase is considerably
longer than one of decrease. This
type is specific for “slow” storms

33 16 7 17.1 17.6 20.6

IV
Expressed asymmetry of the shape
with domination of the decrease
phase. This type is specific for “quick”
storms

37 15 9 19.3 16.4 26.4

V

The discriminant analysis gives a
separate type for this storm shape. It
bears some similarity to type IV. This
shape is typical for fast and deep
cyclones

12 * * 6.3 * *

VI
Intermittent increase and decrease of
waves caused by instabilities of the
atmospheric flow. They are typical for
a shallow or a slow moving cyclone

8 * * 4.2 * *

VII

Passage of a deep cyclone with
distinct separation of fronts.
Depending on the cyclone track wind
wave field either develops having
swell as its background or generates
swell as a residual signal

19 * * 9.9 * *

VIII
A “chain” of storms, which cannot be
separated due to small threshold
value of Z

4 * * 2.1 * *

A matrix of probabilities that a certain storm
category in Table 6.5 (for h=Z) will transform into
another category is shown in Table 6.8 It follows
from the table that there is some weak correlation
between categories  of consecutive storms.

The annual cycle of storms manifests itself in
variations of monthly mean wave height )(th
between seasons. Also, synoptic variability is
higher in winter than in summer.

Such cyclical variations can be expressed as

(6.9)

where m(t) is the multi-year norm (i.e. annually
averaged value) of mean wave height. It is equal to
the mathematical expectation of the periodically
correlated random process. σ(t) is r.m.s. deviation
of monthly mean wave heights from m(t). The
process ξ(t) can be modelled by (I.8)-(I.9) or (I.10)-
(I.11). Lastly, η(t) is an impulse-like random
process, which can be represented by (I.7) with
parameters (6.8).

( ) ( ) ( ) ( )[ ]tttmt t ηξσξ ++=
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Table 6.7
A classification of weather windows

Threshold

1h 2h 3h 1h 2h 3hType Shape Description
Number of weather

windows %

I Smooth decrease and then increase
of storm activity 31 22 16 14.9 22.2 47.1

II
Wind waves in the “window” are
much weaker than the selected

threshold value h
67 17 14 32.2 17.2 41.2

III
Gradual increase of storm activity or

result of passage of a chain of
storms with different tracks

39 14 * 18.8 14.1 *

IV Strong residual wave field that is
decaying after storm passage 49 16 * 23.6 16.2 *

V Wave heights close to the threshold
value h 22 30 4 10.5 30.3 11.7

Table 6.8.
Probability matrix of transformation of one storm category  into another

Storm category I II III IV V
I 0.5 0.1 0.1 0.2 0.1
II 0.3 0.1 0.2 0.2 0.2
III 0.6 0.2 0.1 0.1 ---
IV 0.3 0.2 0.2 0.3 ---
V 0.2 0.3 0.2 0.4 ---

---oooOooo---
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CHAPTER 7

Method of quantile function (BOLIVAR)

The basis of the POT method is independence of
wave heights in different storms. In the previous
chapters we showed, however, that a storm
sequence may be regarded as a Markov’s chain.
In order to exclude the limitations of the POT
method and to take into account the asymptotic
characteristics of AMS, let us consider n samples,
consisting of heights +

ijh  of the largest waves in
the k strongest storms in year number i,(i=1,..,n;
j=1,…,k).

In accordance with definition (6.1), each of these
samples is comprised of wave heights observed
during different storms (no more than one height is
taken from each storm). Let us sort each of the
samples in decreasing order. This will give us the
following ranked series:

(7.1)

The number k of elements in each sample may
vary but 1≥k . For k =1 (i.e. one storm in a year)
this constitutes  a sample of the highest waves.

(7.2)

for all  n years considered. Their distribution was
discussed in Chapter 2 of this review.

The maximum wave height hmax which is possible
once in n years, is the extreme (i.e. last term)
element of the samples, both (7.2) and (7.1).

The order statistics +
jih  are estimates of quantiles

xp. Their probabilistic properties are represented by
the joint probability distribution function

(7.3)

This is called the quantile function. A method of
estimation of highest waves, which is based on
equations (7.1)-(7.3), is called BOLIVAR
[Boukhanovsky, Lopatoukhin, Rozhkov, 1997;
Boukhanovsky, Lopatoukhin, Rozhkov, 1998 (a,b);
Rozhkov et al., 1999; Boukhanovsky, Lavrenov,
Lopatoukhin, Rozhkov, 1999]. Its name is derived
from characters of the author names.

Heights h+ of the highest waves in a sequence of
storms in a single year can be considered
correlated.  Fig. 7.1 shows point diagrams of the
highest waves +

1ih  and +
2ih  in the two strongest

storms during an individual year in the Black,
Baltic, and Barents Seas.

It can be seen from Fig. 7.1 that there is a
relationship between +

1ih  and +
2ih . This is related to

the fact that h+ in the second strongest, the third
and other corresponding storms in a single year
must be lower than the maximum one by definition,
which generates a correlated sequence of
maximum wave heights in storms.

Figure. 7.1: Point diagram of first and second annual maxima (+) of mean wave heights in the Black (I),
Baltic (II) and Barents (III) Seas. The solid line represents linear regression.
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It is known from statistics that ranking of a sample
with the distribution density f(x), even if initially not
correlated, leads to correlation between its statistic
of ith  and  jth order [David, 1969]:

In particular, for n ≈ 30−40 the correlation between
the first two elements in the ranked sample
reaches 0.6 − 0.7. Assuming that not only the
extreme element of the sample +

1ih  but also the

following element +
2ih  has the same asymptotic

distribution , we get:

(7.4)

where G(• ) is Gumbel distribution (2.2).

Then the parameters of the conditional distribution
G(x2|x1) should depend on parameters of G(x1).
Fig. 7.2 shows a comparison of empirical
distributions of the first (annual highest), second
and third highest wave heights with the theoretical
distribution (2.2).

Fig. 7.2 confirms the hypothesis that the empirical
data is distributed according to (2.2). Fig. 7.3
shows quantile diagrams (the median, upper and
lower 10% bounds of the distribution) of the first
eight maxima of wave height. It can be seen that
distributions of ranked wave heights in a single
year are similar. Thus, with some degree of
approximation, it is possible to produce certain
generalized relations between medians
Me(hk

+)/Me(h1
+) and r.m.s deviations  ++

1hhk
σσ of

the first and other maxima. These are represented
in fig. 7.4.

Figure.7.2: Bi-plots of annual maxima distribution.
 The Black sea. I, II, III: the first, second, and the third annual maxima, respectively.

Figure. 7.3: Quantile diagrams for consequential annual maxima hk in the Black (I), Baltic (II) and
Barents (III) Seas. 1: upper and lower 10% bounds of distribution, 2: median.
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Figure. 7.4. Normalised median (I) and r.m.s deviation (II) of consequential annual maxima hk.
1: Black Sea, 2: Baltic Sea, 3: Barents Sea.

Stochastic simulation based on the storm and
weather window model (6.9) is the main technique
for computing the distribution (7.3). It takes into
account both intra-annual and year-to-year cycles.
Fig. 7.5 shows quantile diagrams (the median,
upper and lower 10% distribution bounds)
computed using a 35-year (see table 6.1) and a
100-year simulated series, from (6.9).   It follows
from Fig. 7.5 that the agreement between
observed and simulated data is satisfactory, which,
in turn, confirms the correct choice of probabilistic
model.

Let us consider distributions (7.3) and (5.1). Let pk
denote the probability that during the year number i
the number of storms of certain intensity was k.
Then the multi-dimensional distribution of
probability of maximum wave heights in a
sequence of storms that exceed a specified
threshold will be

Distribution (7.5) generalizes (5.1) because it does
not require an assumption that wave heights in the
storms are independent. Distribution (7.3) is valid
for waves from different storms. According to the
way the distribution (7.1) was constructed, it
makes it possible to distinguish wave heights that
are to be expected once in 100 or 50 years, and
also to estimate wave heights h1

+ and h2
+, that can

take place during a single year during an interval of
n years. For example, the height of the first annual
maximum in the southern part of the Baltic Sea, at
a return period of  100 years, is )100(

1h =5.1 m.

This coincides with the prediction by the AMS
method. The second annual maximum, at 100 year
return period, is )100(

2h =4.1 m.

Figure 7.5: Medians (1,3) and deciles (2,4) of wave heights in the eight strongest storms in (a) the Black
and (b) the Baltic Seas. (1,2): data from Table 6.1. (3,4): simulations using the probabilistic model (6.9).
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This differs from the wave height possible once in
50 years, which is )50(

1h =5.0 m. For a point in the
Barents Sea we obtained the following estimates:

)100(
1h = 6.4m, )100(

2h = 4.6m, )50(
1h = 6.0m,

)50(
2h =4.4 m.

Fig. 7.6 shows distributions of the first, second,
and third annual maxima in the southern part of the
Baltic Sea on the Gumbel probability plot (see
(2.5)). They were computed using (7.3). In
addition, the figure contains distributions G(h) of all
maxima exceeding Z =3.9 m and Z=3.2 m.

It can be seen from fig. 7.6 that for wave heights
exceeding a sufficiently high value (i.e. 3.9 m), the

contribution of the second maxima to distribution
G(h) is insignificant. Distribution G(h) corresponds
closely to that of all first annual maxima (up to the
accuracy of assigning a certain probability pn=1/λT
to its quantiles).

At the same time, the question of whether the
distribution can be reliably estimated using data on
its several upper quantiles remains open. It can be
seen that for a somewhat lower threshold level Z=
3.2 m, data (6) denoted by circles represent a
mixture of first, second, and third annual maxima.
This gives more weight to the “left”  tail of the
distribution and, in  turn, leads to lower estimates
for long return period wave heights.

Figure 7.6: Distribution of annual wave height maxima.
1,2,3: The first, second, and third maxima simulated using (7.3). 4: Distribution of all maxima exceeding

Z=3.9(m). 5: Distribution of all maxima exceeding Z=3.2 (m). 6: A mixture of all strong storms.
7: Samples made of  observed first, second, and third maxima.

---oooOooo---
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CHAPTER 8 
 
 
Annual cycle of extreme wave heights  
 
Monthly mean wave heights h form a data set, 
which provides the most convenient information for 
studying intra–annual variations of extreme wave 
heights. Twelve values of monthly mean wave 
heights, which are observed during a year 
numbered i, form a sample jih . Examination of 

these samples for n years, i.e. jih , i = 1,…,n, 
shows that the annual extreme value of wave 
height ( ) ( )jijjij

hmin,hmax  can be observed 

during various months. Table 8.1 shows how often 

an annual maximum maxh was observed during a 
certain month. 

 
Table 8.1 

Frequency of occurrence (%) of annual maximum  maxh in different months 

Months Sea 
IX X XI XII I II III IV 

Baltic 3 6 34 27 17 3 10 0 
Black 0 0 3 26 26 37 8 0 

Mediterranean 0 0 0 7 33 34 13 13 
Barents 0 10 20 20 10 30 10 0 

 

Thus, the period, during which maxh  can occur, is 
almost half a year long, from autumn to the next 
spring. For example, during 35 years of 
observations the annual maximum in the SE part 
of the Baltic Sea took place in September in 3% of 
cases, and in October in 6% of cases.  
 
The distribution function of monthly mean 

extremes maxh  can be represented as a mixture: 
 

(8.1) 
 

where pn is frequency of occurrence (similar to that 
given in Table 8.1) and Fk(x) is the distribution of 
monthly mean for the nth month over several years. 
 
Monthly mean wave heights are obtained through 
averaging values observed at synoptic times. 
Therefore, we can assume that Fn(x) follows  the 

normal distribution. Table 8.2 gives maximum maxh  

and minimum minh  estimates of yearly extremes, 
yearly means m, r.m.s. deviations σ, estimates of 
skewness (A) and kurtosis (E) for different seas. 

 
Table 8.2. 

Characteristics of monthly mean wave height extremes 
 

  Max  Min 

Sea T m σ A E maxh m σ A E minh
 (years) (m) (m)   (m) (m) (m)   (m) 

Baltic 35 1.20 0.20 0.75 0.86 1.81 0.51 0.04 -0.68 -0.45 0.41
Black 35 1.21 0.16 0.54 -0.05 1.59 0.57 0.04 -1.00 0.06 0.46

Mediterranean 15 0.99 0.16 1.42 2.20 1.45 0.48 0.03 0.70 0.48 0.42
Barents 10 1.82 0.15 0.58 -1.13 2.08 0.95 0.08 -0.73 0.36 0.77

 
Coefficients of skewness and kurtosis for the 
normal distribution are equal to zero. For T = 35 
(years) the 95% confidence limits will be |A*| < 0.8 
and  |E*| < 1.4, and for T = 10 (years) |A*| < 1.2, 

|E*| < 1.8. Only the estimates A* for minh  in the 

Black Sea and (A*, E*) for maxh  in the 
Mediterranean Sea do not satisfy this condition.  
 
Quantiles xp of the normal distribution are as 
follows: x0.9  = 1.28, x0.95 = 1.64, x0.975=1.96, and 
x0.99=2.33. 

( ) ( )∑=
k

knmax xFpxF
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Hence, we can assume for maxh  possible once in 
100 years (at probability 0.99 when annual 
maximums were used): 

**
max 33.2mh σ+=  

where m* and σ* are corresponding estimates. 
 
The mathematical expectation of ith order statistics 
x(i) for normally distributed samples is [David, 
1969]: 
 

(8.2) 
 
 
and the variance is 
 
 
 

(8.3) 
 
 

where Φ(•) and ϕ(•) are the function and density of 
the normal distribution. 

 

In Table 8.3 values of maxh for the T year interval 
from Table 8.2 are compared with the 
corresponding quantile of the distribution and the 
95% confidence range bounds of estimate xp*. The 
latter was computed using relations (8.2), (8.3). 
 
Also, the table gives quantiles of the 95% 
probability interval for the double exponential 
distribution (2.5) which can be interpreted as an 
asymptotic approximation of the last term in the 
ranked sample of monthly extremes. 
 
If the initial distribution is normal, then the 
distribution of extreme values will obey (2.5) with 
parameters a and b determined as follows [Hirtzel, 
1984; Lopatoukhim et al., 1991]: 

 
 

(8.4) 
 
 

 
Table  8.3. 

Estimates of maxh   by initial data and models (8.2)-(8.4) 
 

T maxh  Model (8.2)-(8.3) 
T-year estimate 

Model (2.5), (8.4) 
T-year estimate Sea 

(years) (m) M [ maxh ] h0.025 h0.975 M [ maxh ] h0.025 h0.975 

Baltic 35 1.81 1.62 1.42 1.82 1.63 1.49 1.87 

Black 35 1.59 1.54 1.34 1.75 1.56 1.44 1.74 

Mediterranean 15 1.45 1.27 0.87 1.66 1.28 1.15 1.49 

Barents 10 2.08 1.98 1.14 2.81 2.08 1.94 2.31 
 
It can be seen from Table 8.3 that, for T>15 years, 
the estimates of the order statistics x1-1/T of annual 
extreme values follow normal distribution fairly well 
and are close to the median of distribution (2.5). 
Confidence ranges of hmax are close to the 
probability intervals of the double exponential 
distribution (2.5). 
 
If T≤15 years, models (8.2)-(8.3) and (2.5), (8.4) 
lead to different estimates.  It is obvious that it is 
difficult to justify the use of asymptotic theory for 
samples of short length. 
 

If distribution (8.1) differs considerably from the 
normal one, estimates of probabilistic 
characteristics can be obtained using the Monte-
Carlo approach. The median of the simulated 

series of maxh in the Mediterranean Sea was 
estimated to be 1.39 m. The 95% probability  
range was 1.26 – 1.55 m. 
 
In a case when the frequency of occurrence pi in 
(8.1) is unknown, it can be computed using 
stochastic  models (I.8)-(I.9) or (I.10)-(I.11). 

 
Table 8.4. 

Estimates pi (%)  based on observations and simulation. The Black Sea 
 

Month XI XII I II III 
pi, Table 8.1 3 26 26 37 8 

pi*, model (I.8)-(I.9) 1 29 26 35 9 
95% confidence limits ±1 ±4 ±4 ±4 ±2 
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Table 8.4 shows comparisons of values pi from 
Table 8.1 with values *

ip  obtained using the model 
of periodically correlated random process [see 
(I.8)-(I.9)] for given values of mathematical 
expectation m(t) and covariance function K(t,τ). 
 
It follows from Table 8.4 that the estimates pi and 
*
ip  are very close and their difference does not 

exceed the confidence range: 
 
 

 
 
where T is the sample length (years), see 
Table 8.1. 
 
There are different approaches towards description 
of wind wave seasonal variability. In the reports 
[Bacon et al., 1989; Stanton, 1984] seasonal 
changes of extreme waves in the Atlantic Ocean 
are studied. It is suggested that distribution (2.5) 
with periodic parameters a(t) and b(t) could be 
used to reproduce seasonal  variations of minimum 
and maximum wave heights. Then the distribution 
of annual maxima is represented as the product 
 

(8.5) 
 
Formula (8.5) interprets the annual extreme wave 
height as maximum maximorum, i.e. as the 
maximal value of all maximal wave heights in 
individual months. Unlike (8.5), model (8.1) makes 
it possible to determine the probability pn that the 
annual maximum will take place during a certain 
month. Values pn can be estimated using 
observations in various seas and it also is possible 
to simulate them using the model of intra-annual 
cycles (I.8)-(I.11). 
 
Annual variations of wind waves justify the need to 
consider them as a periodically correlated non-

stationary random process obeying the log-normal 
distribution (I.5) with periodic parameters h0.5(t) 
and s(t). An illustration of usefulness of this 
approach is given in Fig I.3 showing annual 
variations of the h*0.5 and s*. These were 
computed using wave height measurements at 
synoptic times. In some papers [see 
(Athanossoulis G.A., Stephankos Ch.N., 1995; 
Rossouw J. et al., 1995; Stephanakos, 1999)]  
similar graphs for mean wave heights and their 
variances are provided.  
 
Fig. (I.3) suggests that the function of wave height 
distribution at synoptic times Fh(x,t) must take 
intra-annual cycles into account. This can be 
written as follows: 
 

 
(8.6) 

 
where Fh(x,y,σ) is the climatic log-normal 
distribution (h0.5=y, s=1/σ). Variables h0.5 and s in 
(8.6) form a system of random numbers with a two-
dimensional distribution density )(,5.0 •shf . This 

distribution depends on a set θ(t) of parameters 
( )sh a,a

5.0
 and ( )sh b,b

5.0
 for location values and 

scales. According to [Smirnov et al., 1969] the 
median h0.5 is asymptotically normally distributed 
(see, e.g.,  [“Veter i volny” (Wind and waves), 
1974]). Parameter s may be estimated by quantiles 
h0.25 and h0.75 as follows 
 
 
 
Fig 8.1 shows bi-plots of normal distribution for 
values *

5.0h  and σ. It can be seen that the 
distribution of h0.5 and of standard of wave height 
logarithm σ is approximated by the normal 
distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1: Normal distribution bi-plots of median h0.5  and standard deviation σ of 
 wave height logarithms.  The Baltic Sea 
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Table 8.5 shows estimates of random values h0.5, 
s, distribution quantiles for different seas and  
seasons. In the rows containing sea names, the 
time series length T (in years) is also given, as 
well as parameters h0.5 and s, which are 
calculated for the whole time series, i.e. without 

the seasonal cycle. The table also shows 
quantiles of the highest mean wave height in a 
season. These correspond to the first term in 
ranked samples hij consisting of 360 values (90 
days 4 times each) per year. 

 
Table 8.5. 

Estimates of quantiles hp, mathematical expectation M (m), standard deviation σ (m), 
of  median h0.5 (m), parameter s, and maximal wave height maxh  for different seas and seasons. 

Variable  X denotes {h 0.5,s, maxh }. Data correspond to mean wave heights at synoptic times 
Winter Spring Summer Autumn 

X h0.5 
(m) s maxh  

(m) 
h0.5 
(m) s maxh

(m) 
h0.5 
(m) s maxh  

(m) 
h0.5 
(m) s  maxh  

(m) 
The Baltic Sea, T=35 (years), h0.5 =0.66 (m), s=1.81 

5% 0.63 1.45 2.2 0.51 1.67 1.7 0.48 1.94 1.3 0.56 1.52 2.0 
25% 0.68 1.56 2.7 0.55 1.86 1.9 0.52 2.11 1.5 0.66 1.68 2.4 
50% 0.76 1.72 3.2 0.60 2.04 2.3 0.56 2.31 1.7 0.75 1.79 2.7 
75% 0.84 1.87 3.6 0.64 2.21 2.8 0.57 2.48 1.9 0.80 1.93 3.3 
95% 0.98 2.02 4.0 0.68 2.39 3.2 0.60 2.83 2.4 0.91 2.14 4.0 
M[•] 0.77 1.74 3.19 0.60 2.04 2.38 0.55 2.35 1.74 0.75 1.81 2.9 
σ [•] 0.11 0.21 0.55 0.06 0.22 0.51 0.04 0.29 0.29 0.11 0.18 0.69 

The Black Sea, T=35 (years), h0.5 =0.73 (m), s=2.45 
5% 0.74 1.72 2.6 0.66 2.19 1.8 0.49 2.95 0.9 0.66 2.31 1.5 
25% 0.87 2.04 2.9 0.69 2.62 1.9 0.58 3.50 1.1 0.69 2.56 1.9 
50% 0.93 2.17 3.4 0.72 2.94 2.4 0.61 3.88 1.2 0.71 2.80 2.2 
75% 1.00 2.24 4.1 0.76 3.28 2.7 0.63 4.07 1.4 0.74 3.01 2.8 
95% 1.07 2.37 4.8 0.79 3.60 4.0 0.64 4.50 2.1 0.77 3.44 3.3 
M[•] 0.92 2.13 3.59 0.73 2.94 2.58 0.60 3.81 1.29 0.72 2.83 2.38 
σ [•] 0.10 0.20 0.85 0.05 0.44 0.73 0.04 0.45 0.34 0.04 0.35 0.60 

Mediterranean Sea, T=15 (years), h0.5 =0.60 (m), s=2.61 
5% 0.63 1.82 1.9 0.59 2.25 1.5 0.45 3.79 0.8 0.50 2.60 1.40 
25% 0.69 2.07 2.7 0.63 2.67 1.8 0.49 3.97 0.9 0.52 3.02 1.50 
50% 0.73 2.21 3.0 0.64 2.83 2.1 0.51 4.18 1.0 0.54 3.27 1.90 
75% 0.77 2.28 3.2 0.66 2.92 2.2 0.52 4.59 1.1 0.56 3.44 1.90 
95% 0.89 2.74 3.8 0.70 3.13 2.8 0.55 4.98 1.3 0.57 3.61 2.40 
M[•] 0.75 2.27 3.03 0.65 2.80 2.12 0.51 4.36 1.03 0.54 3.29 1.89 
σ [•] 0.09 0.30 0.53 0.03 0.23 0.42 0.03 0.46 0.15 0.02 0.40 0.42 

Caspian Sea, T=39 (years), h0.5=0.65 (m), s=2.46 
5% 0.62 1.92 1.5 0.59 2.19 1.4 0.52 2.60 1.0 0.60 2.03 1.4 
25% 0.67 2.08 2.0 0.63 2.44 1.7 0.55 2.76 1.0 0.62 2.34 1.7 
50% 0.72 2.27 2.2 0.66 2.65 1.9 0.56 2.92 1.2 0.64 2.56 1.9 
75% 0.77 2.49 2.6 0.71 2.90 2.2 0.58 3.08 1.3 0.69 2.83 2.0 
95% 0.84 2.82 3.1 0.74 3.16 2.7 0.63 3.32 1.5 0.79 3.08 2.8 
M[•] 0.73 2.34 2.33 0.67 2.67 1.96 0.57 2.93 1.19 0.66 1.94 1.94 
σ [•] 0.07 0.30 0.47 0.05 0.31 0.39 0.03 0.22 0.20 0.06 0.42 0.42 
 
Probability bounds for the seasonal maximum hmax 
can be considered as the seasonal maximum 
wave heights that can occur once in T years. 
Therefore, the 90% probability margin can be 
taken as an estimate of 10 – year wave height for 
a particular season, while the 99% probability 
margin corresponds to the hundred-year wave 
height. There are several ways to estimate these, 
including using formulae (2.5) and (8.4) for first 
elements of the ranked sample of 360 elements. At 

the same time, the quantile corresponding to 
exceedance rate q in distribution (8.5) can be 
considered as a deterministic function of random 
arguments h0.5, σ 
 

(8.7) 
 
where Uq is the quantile that corresponds to 
exceedance rate q for the normal distribution. 

[ ]q5.0q Uexphh σ=
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Using a statistical linearization method one can 
obtain from (8.7) the following estimates for 
mathematical expectation and variance: 

(8.8) 
 
 
 
where ρ is the correlation between values h0.5 and 
δ. These estimates make it possible to employ data 
from Table 8.5 and derive parametric estimates for 
the probabilistic interval hmax. 
 
Adequate utilization of estimates (8.3) or (8.8) 
requires taking into account correlation between 
elements in the sample. As a first approximation 
this can be done via transformation towards 
number (2.15) of “conditionally independent” 
measurements n̂ . Thus, if one takes n̂ =1 for the 
Baltic Sea (i.e. uses all 6-hour interval data), then 
relation (8.8) predicts mh=3.7 m for winter season. 
If n̂ =2 (corresponding to 12-hour intervals), then 
mh=3.3 m. The sample data correspond to mh*=3.2 
m.  
 
Table 8.6 gives estimates of mathematical 
expectation M[h] and bounds for the 90%  

probability intervals of seasonal extreme values 
h5%, h95% of wave height at synoptic times, which 
were constructed using the following methods: 
 
• Method “A”. Non-parametric range estimate 

that interprets hmax as the limiting element of 
the log-normal sample (I.4), (8.2), (8.3); 

• Method “B”. Parametric range estimate where 
hmax is understood as a random value with 
asymptotic distribution (2.5) and parameters 
(2.10); 

• Method “C”. Parametric range estimate, in 
which hmax is considered as a deterministic 
function of random argument (8.7); 

• Method «D». An ensemble of elements that 
satisfies (8.5) is simulated by stochastic  
model (6.9). 

 
The direct computation of probabilistic ranges for 
distribution (8.5) requires considerable effort. Also, 
additional approximations of functions under the 
integral are needed. As a result, it is better to 
simulate them using a stochastic model. The 
simulations  represent the impulse-like behavior of 
random maximum wave heights h+ in storms at the 
synoptic range (see distribution F(h,y,z) in (8.6)) 
with parameters y,z of distribution ( )zyfh ,

5.0
. 

 
Table 8.6. 

Point-wise estimates of seasonal maxima of mean wave heights at synoptic times and their 90% probability 
intervals  (h5% - h95% ) computed by  methods «A», «B», «C», «D». The Baltic Sea 

 
Winter Spring Summer Autumn 

Method 
h5% M[h] h95% h5% M[h] h95% h5% M[h] h95% h5% M[h] h95%

«A» 2.3 3.3 4.5 1.6 2.1 2.6 1.3 1.6 1.9 1.1 2.5 3.9 
«B» 2.5 3.5 4.9 1.6 2.1 2.9 1.4 1.7 2.3 2.0 2.7 3.6 
«C» 2.3 3.3 4.4 1.5 2.1 2.7 1.2 1.6 2.0 1.5 2.5 3.5 
«D» 2.1 3.0 4.2 1.4 2.1 3.3 1.1 1.5 2.1 2.0 2.8 3.8 

Data from 
table 8.5 2.2 3.2 4.0 1.7 2.4 3.2 1.3 1.7 2.4 2.0 2.9 4.0 

 
Table 8.7 

Seasonal maxima of wave heights simulated using IDM with n̂ =4 (one record in a day). The Baltic Sea 
 

T Seasonal extreme values (m) Annual extreme  
(years) Winter Spring Summer Autumn values (m) 

50  5.7 3.3 2.5 5.2 5.6 
100  6.4 3.7 2.7 5.7 6.1 

 
A comparison of data with results in Table 8.5 
suggests that methods «A»-«D» may lead to 
significant differences in the estimates. However, 
in general, they all provide reasonable values of 
hmax. 
 
Values of h95% in Table 8.6 can be understood as 
the seasonal maximum wave height at 20 year 
return period. Table 8.7 shows estimates of waves 
at longer return periods (namely, 50 and 100 year). 
These were obtained with the Initial Distribution 

Method with mean values of parameters h0.5 and s 
as given in Table 8.5. It is obvious from the table 
that annual maxima corresponding to 50 and 100 
years return periods take place mostly in winter. 
The fact that the “winter” estimates are slightly 
larger than the annual maxima illustrates the 
sensitivity of the IDM results to variations of 
parameter s. When it comes to actual applications, 
estimates of seasonal and annual extreme wave 
heights must correspond to each other precisely. 

---oooOoooo--- 
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CHAPTER 9

Comparisons of extreme wave height estimates

As shown in chapters 1-8, several methods for
estimation of extreme wave height hmax are
available. Irrespective of the length of the original
data series, the final estimate of h*max should be
treated as a random value. Each of the considered
methods is based on specific assumptions, and
therefore the estimates obtained with the help of
these methods should by definition be somewhat
different. It is thus very relevant to compare the
basic features of the estimates. Let us make the
comparison and summarise the main differences in
all the methods.

Table 9.1 demonstrates corresponding maxh
estimates. These were obtained using a wave
height data series, which was the same for all the
methods. The wave heights in the Baltic Sea were
simulated with a hydrodynamic model driven by
the observed wind.

The time interval between wave height readings is
six hours. Table 9.1 shows only the summary data
for mean wave heights. We also analysed wave
heights of other probabilities of exceedance, and
our conclusions remained largely unchanged.

Table 9.1
Extreme values maxh  of mean wave heights at return periods of 50 and 100 years

obtained with the use of different methods. The Baltic Sea

Method h(50), (m) h(100) , (m)
IDM, 1=n! , h0.5=0.66 (m), s=1.8 6.7 7.3
IDM, 4=n! , h0.5=0.66 (m), s=1.8 5.7 6.2
IDM, (2.15), 10=n!  (�=0.2), h0.5=0.66 (m), s=1.8 4.8 5.5
AMS (2.10), 1=n! , a=1.73, b=3.96 6.4 6.8
AMS (2.10), 4=n! , a=1.97, b=3.14 5.3 5.6
AMS (2.10), 10=n!  (ρ=0.2 in (2.15)),
a=2.14, b=2.65

4.6 5.0

AMS, sample estimated a=2.50, b=3.25
95% confidence interval (m):

5.0
4.5–5.4

5.2
4.6–5.6

POT, Z=2.5 (m), λ=6.0, (213 storms)
95% interval for return period T (year)

4.7
47–53

4.9
95–106

POT, Z=3.0 (m), λ=2.4, (85 storms)
95% interval for return period T (year)

4.4
44–58

4.6
88–116

POT, Z=3.4 (m), λ=1.0, (35 storms)
95% interval for return period T (year)

4.3
37–63

4.4
73–125

POT, Z=3.6 (m), λ=0.4, (15 storms)
95% interval for return period T (year)

4.2
36–84

4.3
71–167

MENU 6.2 6.9
BOLIVAR, 1st maximum 5.0 5.2
BOLIVAR, 2nd maximum 4.0 4.3
BOLIVAR, 3rd maximum 3.8 4.0

Note:   n! =1 corresponds to wave height data recorded at every observation time, i.e. with 6
hour intervals; n! =4 corresponds to data extracted once in four observation times, i.e.
once every 24 hours; and n! =10 refers to data taken once every ten observation
times, which, in accordance with relation (2.15), is equivalent to using non-correlated
(or independent) observations.

The true value of hmax is, a priori, unknown. It must
be located in some range with bounds (h1,h2), the
width of which depends on the initial assumptions
of the methods in use. Therefore, a single value
(i.e one point) estimate of hmax does not say much
about the advantages and shortcomings of the

methods. Wave heights also exhibit inter-annual,
seasonal and synoptic variability as described by
equation (8.5). Therefore, for all of the above
methods, the estimated confidence interval of
parametric or non-parametric quantiles *

ph  does
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not correspond to true variability of hmax. If the time
series length is increased infinitely, all the methods
predict a zero confidence limit range, while in real
conditions, mostly due to existence of natural
variability of different kinds and scales, there is a
lower finite limit of this range. These
considerations are relevant for the analysis of data
in Table 9.1. To compare the results we need to
have an estimate of the true value of hmax.
Because the AMS method has the strongest
theoretical foundation and reflects the existence of
the inter-annual variability, let us assume that the
estimate obtained with the help of the AMS method
(2.17) is the most truthful. Thus in Table 9.1 we
provide various range estimates obtained with the
help of the AMS method and compare them with
single value estimates that are obtained using the
other methods.

The AMS method

This method is based on processing of the last
elements of the data series. The theoretical
foundation of this method is the most elaborated,
and from the outset the method was designed for
prediction of extreme values. Parameters a and b
in relation (2.5) are evaluated either using original
data (more specifically, annual maxima) or
relations (2.10) corrected with respect to the
correlation range (because the number n of
readings in the sample enters formula (2.10)).

Processing of observations for the Baltic Sea
yields a hundred year wave height hmax of 5.2 m. If
internal correlation is not taken into account,
relation (2.10) yields a hundred year wave height

maxh of 6.8 m.  If four consecutive observations are
considered correlated (i.e. correlation range is
equal to a day), hmax =5.6 m.  For the correlation
range of two and a half days ( n! =10) maxh =5.0 m.
This means that taking into account the correlation
between neighbouring observations leads to
smaller estimates of maxh . In normal practice the
AMS estimates are made with parameter values
determined using the annual maxima from the
sample.

The IDM method

The initial distribution contains the whole range of
wave heights at all observation times. Therefore, it
experiences all possible wave generating
conditions. Situations with extreme waves
constitute only a small part of this variety. All IDM
extreme wave height estimates should therefore
be interpreted in terms of synoptic observations, as
follows, “Once at a single synoptic observation
time during n years the wave height h can be
observed”. The probability of such extreme wave
height depends on the total number of synoptic
observation times. This means that the IDM

method does not produce a distribution of extreme
wave heights but determines the quantile, to which
the maximum wave corresponds. Another problem
is connected to the need for making extrapolations.
Usually, an extrapolation is justified up to the
probability level of 0.1 %. However, if the original
data series is one hundred years long, it can be
made up to 0.01%.

For all IDM results in Table 9.1 the parameters h0.5
and s of the log-normal distribution are unchanged.
Correspondingly, the differences in the estimates
for a 50-year and 100-year return wave height
resemble the differences in the corresponding
probabilities. Using an equivalent independent
number of wave records (i.e. 10ˆ =n ) instead of
correlated wave records (i.e. for 4,1ˆ =n ) leads to
smaller estimates of extreme wave heights, which
are closer to the estimates obtained with the help
of the AMS method.

Thus, the IDM method, which, in fact, is one of the
earliest methods in wave statistics, and which was
not intended for use in estimation of extreme wave
heights, can, nevertheless, lead to reasonable
estimates. In order to successfully use this method
it is very important to specify the correct probability
of extreme wave heights. It should, however, be
remembered that the distribution of extreme wave
heights is dependent on the initial distribution. For
example, if the initial distribution is of exponential
type, then the distribution of extreme (rare) values
asymptotically tends to the first limiting distribution
(2.5). There are many studies, in which log-normal
or Weibull distributions represent the general
distribution of wave heights. Both log-normal and
Weibull distributions are exponential. In recent
years more and more investigators have preferred
the log-normal distribution, feeling that it better
represents observed and simulated data for mid-
latitudes and subtropics where mixed waves
dominate.

The POT method

This method is the most popular at present.
Extreme waves are observed during storms which
alternate with weather windows (See Fig. I.1). In
the POT method the sequence of storms is
practically treated as a pulse-like random process.
The method selects only the highest wave in a
storm. This means that it is aimed at estimation of
the extreme values.

At the same time, the lack of asymptotic relations
in the POT method does not allow a theoretical
derivation of quantile hp. It is dependent on the
approximations assumed in (5.1). Furthermore, the
method supposes independence of consecutive
storms and uses the Poisson distribution for the
storm number. This leads to some uncertainty in
estimated return period (see Fig. 5.3).
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Attempts to consider the consecutive storms
correlated and, on the basis of this, to introduce
corresponding corrections in the Poisson
distribution, do not change the results significantly.
The most “influential” parameter in the POT
method is the threshold value of wave height,
which discriminates between normal variations of
the random process and a storm of interest. For
example (see Table 9.1), if the selected threshold
changes from 2.5 to 3.6 m, the estimated height of
a hundred year wave decreases by 60 cm.
Equation (5.10) and fig. 5.2 are instrumental in
choosing the optimal threshold value of wave
height separating storms that should be selected
for further analysis. If the POT method is applied to
observed series of wave heights, then any change
of the threshold value results in recalculation of the
combined distribution parameters using the original
time series. Thus, in this case, the choice of the
threshold affects the final results less strongly than
it does when equation (5.10) is used.

It is noteworthy that studies conducted in other
regions of the World Oceans also exhibit strong
changes of the POT method output wave height in
response to the threshold variations. Bjerke et al.
(1990) used a nine-year time series of
observations conducted every three hours in the
coastal waters of Norway and obtained the
following estimates of a hundred year wave height:
16 m for threshold of 3 m and to 14.5 m for
threshold of 9 m.  Estimates of a hundred year
significant wave height along the Atlantic coast of
Spain by Rossouw et al. (1995) changed from 13.4
m to 11.7 m due to the threshold variations.

The dependence of the POT method results on the
choice of the threshold wave height has been
studied in many papers and is well known. Several
criteria are proposed for the storm selection
[Szabo et al., 1989]. The general rule is the higher
the threshold, the smaller the estimated extreme
wave height hmax. When the threshold values
exceed a certain limit, which is sufficiently high, the
POT method extreme wave heights tend to a
certain stable value. When the threshold
decreases, the POT method estimates approach
the IDM method estimates.

A serious shortcoming of the POT method is
connected to the uncertainty in the estimates of the
return period. This is clearly seen in Table 9.1, and
is illustrated in Fig. 5.3. For higher values of the

threshold the number of selected storms in the
sample may become rather small, therefore the
estimates of λ become less accurate, resulting in a
broader confidence range for the return period. For
example, for the threshold of 2.5 m, 213 storms
were selected, and the confidence ranges for 50-
year and 100-year wave heights are as small as 6
and 11 years, respectively.

When the threshold progressively increases from
2.5 m to 3.6 m, the number of selected storms
decreases from 213 to 15, and the uncertainty in
the return period of 50-year and 100-year wave
height estimates increases to 48 and 96 years,
respectively.

Summarizing, the POT method results in
somewhat smaller estimates of extreme wave
height in comparison with the AMS method. The
higher the threshold, the smaller the final estimate.

The MENU method

This method represents the wave series as a
random process. A return period of the extreme
wave height h is considered as the expected time
of the first up-crossing of this level. As a result,
MENU extreme wave height estimates do not differ
greatly from the corresponding estimates obtained
from the IDM method.

The BOLIVAR method

The method does not assume that consecutive
storms are not correlated. It takes into account not
only all storms in which wave heights exceeded a
certain threshold, but includes data for the
strongest storm in each year in the time series.

This means that at least one record for any year is
included in the analysis. This procedure makes it
possible to utilize asymptotic distributions for
maximum wave heights.

The use of the multi-dimensional distribution
function (7.3) also makes it possible to extend the
analysis from the first to other consecutive maxima
that can be recorded at different return periods. It
is possible that the second maximum of wave
height at return period of 100 years is larger than
the estimated 50-year wave height. The ability to
produce such estimates is an advantage of the
BOLIVAR method.

---oooOooo---
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CHAPTER 10

Kinematic characteristics of the highest waves

Estimates of significant or mean wave height,
irrespective of the method of their generation, refer
to a quasi-stationary interval. The highest wave in
a quasi-stationary interval depends on its duration.
Other quantiles of wave height distribution can be
obtained in deep water using the Rayleigh (I.1) or
Forristall (I.2) distributions. In practical
applications, it is common to associate the
maximum wave height with the estimate of 0.1 %
probability. Then, for the Rayleigh distribution
h0.1%=2.96 h . An apparently more efficient
approach, however, is comprised of the three
following steps. The first step is the estimation of
the extreme storm duration for the location of
interest. The second step is the calculation of the
corresponding probability of the maximum wave
(see [Boukhanovsky et al., 1998].) Then, finally, its
height can be evaluated.

In shallow water, Glukhovsky’s distribution
[Glukhovsky, 1966] is used most often in Russia:

(10.1)

where h*= h /H is relative average wave height,
and H denotes water depth.

The Rayleigh and Forristall distributions are
theoretically unlimited and may predict
unrealistically large wave heights. Thus, a limiting
height is introduced associated with wave
breaking. The extreme height (i.e. the height at
which wave breaking occurs) is determined by an
equation from the finite amplitude wave theory
[Easson, 1997; Sarpkaya, Isaacson, 1981]:

(10.2)

where hb is the breaking wave height, g is the
acceleration of gravity, H is local water depth, τ is
the wave period.

The constants in equation (10.2) are: C1=0.02711
and C2=28.77.  Constant C1 determines the
maximum possible steepness of a finite amplitude
wave in deep water, while constant C2 reflects the
influence of shallow water effects.

For H78.0h,0H b =→ .

For 71h,H b →∞→ λ , λ being the
corresponding wavelength.

A more comprehensive description of extreme
waves should include not only wave height, but
other kinematic characteristics such as period τ,
length λ and crest height c. The conditional
distribution of wave periods for a certain height
F(τ h), which is also called associated, can be
approximated by a Weibull distribution with shape
parameters depending on the wave height and
period accordingly [Wind, 1974]. The Weibull
distribution for the conditional distribution can be
written as

(10.3)

where  hm |τ  is the regression between τ and h.

The shape parameter kh for τ|h varies from 2.62 to
7.47 [Wind, 1974]. In practice, shape parameters
do not depend on the degree of wave development
and the type of wave system. The regression

is defined as the conditional mean of one random
value (the other one is invariant), and the skedastic
ratio (conditional variance) is defined as

The behaviour of the regression and skedastic
ratios for calculated conditional distributions F(τ|h)
is presented in Fig 10.1. Similar figures have been
published in many papers (see, e.g., [Wind, 1974;
Boukhanovsky et al., 1999;  Lopatoukhin, 1974]).

The figure shows that conditional average values
of wave periods for a given wave height mτ|h
strongly depend on h and τ only for values smaller
than the average. For wave height or period
exceeding the average, these two parameters
become nearly constant. Dependence of
conditional variances Dτ|h and Dh|τ on the height
and period is seen over the whole range of
variability. A parabolic shape of the conditional
variance curve indicates that the greatest diversity
is pertinent for waves with heights close to the
distribution centre. For practical purposes, it may
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be assumed that mean wave period associated
with large waves (at least larger then the mean
wave height) is about 1.15-1.20 τ . An analysis

based on a breakdown of various wave generating
conditions would result in a wider probability
interval for the scedastic ratio.

Figure 10.1: Regression (a) and skedastic (b) ratios for the wave periods with prescribed wave he
the Black Sea. Crosses are the borders of  90% confidence interval.

In practical computations of mean period τ , which
is associated with wave heights h of a certain
probability of exceedance, parameterizations of the
conditional mean mτ|h and of its probability range
bounds (τlower, τupper) are used:

(10.4)

Davidan et al. (1978) used an extensive array of
field observations and suggested the following
approximations for the parameters in relation
(10.4): A=4.8, B=0.5.

The lower bound lowerτ  of mean wave periods
depends on wave kinematics and can be
determined using an equation for maximal wave
steepness. For example, Battjes (1972) proposed
the following relation:

(10.5)

where hs stands for significant wave height.

[Teng et al., 1993] used observations from buoys
moored off the Atlantic and Pacific coasts of the
U.S. and proposed the two following modifications
of equation (10.4):

(10.6)

Other studies (see [Chung-Chu-Teng et al., 1993])
showed that the approximation by Battjes tended
to overestimate lowerτ  while the second formula
(10.6) by Teng and co-authors (1993)
underestimated it.

The limit on the upper bound upperτ  can be
as a certain quantile of the conditional dis
of wave periods (τ|h) for a given wave he
5% probability quantile is a reasonable cho

Another useful kinematic characteristic 
spectrum is the period τp corresponding
energy peak. Buckley (1988; 1993) and Ch
Teng et al. (1993) used an equation for i
limit corresponding to a given significan
height hs.  It is equivalent to the following fo

For the upper limit (τp)upper  Buckley (1988
the following expression fitting the upper e
of an empirical data set:

The ratio of period of the spectral peak τp 
period τ  is known to vary from 1.1 to 1.4 
1979].

Classical hydrodynamics makes it pos
derive all basic kinematic parameters of th
of interest if parameters (h, τ) are kno
example, the linear theory of small am
waves, which is applicable to sufficient
waters, yields:

For shallow water areas with depth H, the
provides a transcendental equation
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(10.10)

which can be solved with respect to wavelength λ.

In locations where the water depth is comparable
to wave height, it is necessary to use
approximations of the potential theory for waves of
finite amplitude, e.g. a third-order Stokes
expansion for the velocity potential function ϕ(x,y)
(see [Aleshkov, 1996; Sretensky, 1977; Lambrakos
et al., 1974)]:

(10.11)

Here ε is the dimensionless small parameter
defined by the kinematic characteristics of the
wave, ϕ1 is the first expansion term corresponding
to a linear approximation of the potential theory of
small-amplitude progressive waves, and ϕ2 and ϕ3

are the non-linear addends corresponding to the
second and third approximations.

The free-surface ordinate ζ corresponding to
equation (10.11) with accuracy to the third
expansion term is written as [Aleshkov, 1996]:

(10.12)

where a  is the wave amplitude, χ is the wave phase,

and k is the wave number.

The phase velocity of a third-order Stokes wave is defined as:

(10.13)

The height of a Stokes wave is equal to:

(10.14)

where ( )39kHch76kHch32kHch32
kHsh64

1b 246
6 +−+= .

The crest height c and the trough depth are
determined, respectively, for χ=0 and χ=π.

The length of a Stokes wave is λ=2π/k, and its
amplitude a is determined based on the
established period ωπτ 2=  and height h by
numerical solution of the set of transcendental
equations (10.13) and (10.14).

In practice the individual wave crest (c) distribution
is provided, for example in [Haring, Heideman,
1980])  as

(10.15)

where m0 is the zeroth moment of wave spectrum.
The crest height of p% probability is estimated as a
solution to this equation with initial value cinit=0.5hp,
in accordance with the analytical solution (10.9) for
waves of infinitely small amplitude.

However, to estimate the crest height of waves at
n-year return period (n=1, 5, 10, 25, 50, and 100
years) for a shallow water area, it is recommended
that the crest of a higher-order theory of wave
profile is used.

Lambrakos and Brannon (1974) estimated wave
crest heights using the higher order Extended
Velocity Potential (EXVP) wave theory. The theory
considers a Stokes-type wave, which has front-to-
back symmetry of its crest and propagates without
deformation. The EXVP wave theory is
instrumental in determining the geometry and
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kinematics of individual waves. In the theory the
velocity potential has the form

( ) ( ) ( )[ ]txksinBzkcosht,z,x nnnn ωϕ −=∑
(10.16)

In this expression, z is positive upwards from the
seafloor, x is positive in the direction of wave
propagation, the summation is made over
n = 1,2,...,N frequencies, kn = 2π/λn is wave
number for frequency n, ωn = 2π/τn is angular wave
frequency for frequency n, λn is wave length for
frequency n, and τn is wave period for frequency n.
The input data for EXVP are the water depth H, the

wave height h, and the zero-crossing period τ of
the wave.

The tables and plots for the estimation of wave
crest are published [Sarpkaya, Isaacson 1981]. A
part of those tables is reproduced in Table 10.1.

Let us consider an example. Suppose H=17.1 m,
h=10.7 m, and τ=12.5 s.

Then from (10.2) we get hb= 12.8 m, h/hb=0.83,
and H/gτ2=0.01094.  Interpolating data in the Table
we obtain: c/h=0.766, i.e. c=8.2 m.

In real situations the ratio c/h varies in the range
from 0.50 to 0.80.

Table 10.1
Crest/wave height (c/h) ratio as a function of h/hb and H/gτ2

H/gττττ2

h/hb
0,0090 0,0140 0,0190 0,0240 0,0290 0,0340 0,0390 0,0440 0,0490 0,0540 0,0590 0,0640 0,0690

0,00 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000
0,08 0,5369 0,5262 0,5193 0,5165 0,5145 0,5130 0,5117 0,5109 0,5105 0,5102 0,5098 0,5095 0,5092
0,16 0,5724 0,5509 0,5388 0,5333 0,5294 0,5267 0,5244 0,5229 0,5221 0,5213 0,5206 0,5199 0,5193
0,24 0,6064 0,5751 0,5587 0,5505 0,5447 0,5409 0,5377 0,5356 0,5344 0,5333 0,5322 0,5313 0,5304
0,32 0,6382 0,5994 0,5792 0,5681 0,5604 0,5556 0,5514 0,5488 0,5473 0,5459 0,5447 0,5435 0,5424
0,40 0,6665 0,6234 0,5996 0,5859 0,5764 0,5704 0,5653 0,5622 0,5604 0,5588 0,5574 0,5560 0,5548
0,48 0,6926 0,6468 0,6200 0,6038 0,5925 0,5855 0,5795 0,5758 0,5737 0,5717 0,5700 0,5683 0,5669
0,56 0,7187 0,6698 0,6415 0,6227 0,6095 0,6013 0,5942 0,5898 0,5871 0,5846 0,5824 0,5803 0,5784
0,64 0,7422 0,6934 0,6643 0,6433 0,6283 0,6186 0,6103 0,6049 0,6016 0,5985 0,5957 0,5932 0,5908
0,72 0,7630 0,7178 0,6878 0,6657 0,6493 0,6381 0,6283 0,6221 0,6182 0,6147 0,6114 0,6085 0,6058
0,80 0,7811 0,7407 0,7112 0,6889 0,6718 0,6590 0,6479 0,6410 0,6369 0,6332 0,6298 0,6267 0,6238
0,88 0,7933 0,7564 0,7299 0,7090 0,6924 0,6791 0,6676 0,6604 0,6561 0,6522 0,6486 0,6454 0,6423
0,96 0,7970 0,7614 0,7371 0,7179 0,7031 0,6918 0,6821 0,6756 0,6712 0,6673 0,6636 0,6603 0,6573

---oooOooo---
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CHAPTER 11

Ship design and offshore engineering require not
only estimates of wave height hmax but also
information on wave frequency spectrum S(ω) that
corresponds to extreme wave conditions. Recent
years have been marked by the availability of new
wave observations. Automated buoys started to
measure waves regularly in the offshore waters of
many countries [Hamsley, 1996].

Wave measurements from satellites now cover a
period of almost 15 years. The wave data exists as
measured and simulated wave heights and wave
spectra, both omni-directional S(ω) and directional
S(ω,β). They are functions of spatial co-ordinates
(such as x,y) and time t. Thus, it is possible to
draw some parallel between a “wave weather
ensemble” and a wave spectra S(ω,β,x,y,t)
ensemble, and to make a step from classification
of wave heights to a classification of spectra. The
term «spectral wave climate» was approved by a
major conference on wind waves (1998), in which
experts representing open ocean shipping, shelf
engineering and construction participated along
with specialists in wave modelling and research
[”Provision …”, 1998 ].

Let us consider several examples of wind wave
spectrum variations during a storm passage.

Fig. 11.1 shows an example of the variation of the
frequency spectrum S(ω,t) at a point located in the
North Atlantic, as measured by RV “Weather
Reporter” of the UK, from 15th  to 19th December
1959 [Wilson, 1965]. The upper panel of the figure
also shows data on wind speed u, wave height
variance Dζ, and mean wave period τ. Wind
strengthening up to 30 knots occurred from 6 to 18
h December 16, 1959. The wind wave spectrum
during that period of time did not change
significantly. From 18 h December 16th to 03 h
December 17th the wind veered and strengthened
up to 62 knots.

The wave spectrum was growing quickly and
reached its peak by 18 h December 17. Then, it
weakened a little following a corresponding
decrease in the wind speed and again
strengthened reaching the maximum at 0 h
December 18th. Subsequent variations of the
spectrum correspond to the storm wave decay.

Figure 11.1: Lower panel: An example of variations of frequency spectrum Sζ(ω,t)  (m2s). The upper panel:
variations of total variance Dζ(t) (m2), mean wave period τ(s) and wind speed u (knots).

Fig. 11.2 shows sections of function S(ω,t) from
22nd August to 6th September 1966 measured by
research vessels  “Iceberg” of Russia and
“Weather Adviser” of the UK. Three phases of
storm development can be noticed, namely a
development of wind sea from an initial complex
wave field, then a transformation of the wind wave
to swell and, finally, the existence of a new
complex wave field.

From August 28 to September 6, 1966, Ocean
Weather Station (OWS) “I” experienced the impact
of three cyclones and the hurricane “Vera”.
Features of the wind wave spectrum variations that
were observable by naked eye were its growth
under the action of a strengthening wind and
associated changes of the total spectrum variance.
Then, following a change of wind direction, the
wave field became mixed, and the spectrum
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developed a second peak. The storm decay was
accompanied by a decrease of the total wave
spectrum variance. Later on, swell started to
dominate the whole pattern. These processes are
seen in Fig. 1.3.

According to [Goldman, 1977], it is possible to
reconstruct conditions of a hypothetical (artificial)
storm that would lead to the highest practically
possible waves at a location of interest. The idea is
to look at a situation that did not happen as yet but
can, in principle, happen in future.

Figure 11.2: Spectral density S(ω,t) (m2s) of wind waves in the North Atlantic from
August 22 to September 6, 1966.  1: wind speed (m/s), with arrows indicating the direction.

2: significant  wave height (m).

Figure11.3: Changes of wave frequency spectrum at OWS “I” during the hurricane “Vera”.
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For example, for the Gulf of Alaska, and for area
around Iceland, a combined wave height of 35 m
could be anticipated. The combined wave was
composed of a wind wave (sea) of 33 m with
period of 27 s, and a swell wave of 12 m with
period of 31 s.  It was generated in conditions of
strong atmospheric pressure gradients along a
cold front. Persistent strong winds blew over
fetches of several hundreds of kilometers
superimposed on considerable horizontal gradients
of sea surface temperature. Apparently, the
geographical and meteorological conditions of both
areas do not preclude such a combination of
factors from happening. However, the possibility
that such storm could happen requires additional
study.

Participants at the 18th Assembly of the
International Maritime Organization (1993) agreed
upon the following definition. The extreme wave
spectrum is to be understood as the spectrum
corresponding to the maximal possible value of
significant wave height (hs) derived using wave
measurements at different locations during time
period not shorter than 10 years. The climatic
wave spectrum is defined as the averaged
spectrum over an ensemble of spectra that have a
certain probability, and correspond to dominant

wave generation conditions over the area. Some
progress in studying the climatic wave spectra can
be reported.

The first averaged wave spectra were computed
using 204 wave records at OWS “I” in the North
Atlantic. Wind speeds there ranged between 2 and
25 m/s and mean wave heights varied from 0.5 to
4.5 m [Skott, 1968].

The following approximation was obtained for the
average spectrum ( )ωS :

(11.1)
Relation (11.1) makes it possible to compute ( )ωS
for some areas of the World Oceans and for
different seasons, provided two-dimensional
(height and period) distributions are known (e.g.,
from a reference book).

[Ochi, 1978] analyzed 800 spectra of wind waves
at nine Ocean Weather Stations in the North
Atlantic, and showed that the most general
representation for such spectra would be

(11.2)

where hs denoted significant wave height, ωm was
the frequency of the spectral maximum, λ was a
parameter defining shape of the spectrum, and
Γ(λ) was the Gamma-function.

Equation (11.2) takes into account that, as a rule,
wave spectra contain two peaks, at low and higher
frequencies. This makes it possible to find a
correspondence between a series of spectra Si(ω),
i=1,…,n, and six parameters (hs, ωm, λ)j, j = 1, 2.
Then these parameters can be used in developing
a classification of wind waves.

[Buckley, 1988] analyzed more than 2 million
spectra that were generated over 12 years at 13
buoys located in coastal waters of the USA. All the
wave situations that the study included were
broken down into twelve types, according to their
significant wave height. The highest waves had
hs>9.5 m. The abundance of data series made it
possible not only to compute the average
spectrum ( )ωS  for all the classes, but even to
derive a distribution function Fs(x) and
corresponding quantiles Sp(ω) of this distribution.
Fig. 11.4 gives three statistical characteristics of
spectra corresponding to two classes of hs.

It is relevant to note that the quantile spectrum
Sp(ω) for given probability p, e.g. for p = 0.05,

coincides for every frequency ωk with different
spectra Si(ωk). Thus, Smax(ωk) is the upper
envelope for the family of spectra Si(ωk) composed
of maximum elements in samples (S1….S n)
composed of values Si(ωk) for i=1,…,n (where n is
number of spectra in the sample). Only tuning of
the parameters can force the spectrum ( )ωS  to
coincide with any known single-peaked or double-
peaked approximation, such as (11.1), (11.2) or
JONSWAP. Computations of climatic wave spectra
for the Barents and Black Seas were carried out in
[Lopatoukhin, Boukhanovsky, 1997;
Boukhanovsky, Lopatoukhin, Rozhkov, 1998a,
Lopatoukhin, et al., 1999].

Several researchers, e.g. [Vincent et al., 1977],
represent ensemble Si(ωk) using the expansion
with respect to orthogonal eigen-components:

(11.3)

where ϕν(ωk)  denote basis functions and aiν are
coefficients.

The fastest convergence of series (11.3) takes
place when ϕν(ωk) are equal to eigenfunctions of
the correlation matrix KS*(ωi, ωj) of spectral
estimate S*i(ωk).
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Figure11.4: Climatic wave spectra for buoy No. 44004 (Atlantic coast of the USA) [Buckley, 1988],
(a): sample of 8771 spectra, (b): sample of 1156 spectra. Notations: – – denotes mean spectrum,  –+–

stands for the mean spectrum plus standard deviation, and –x– denotes the maximal spectrum. Values of
28.4% and 3.8% are the probability of spectra in this location

Figure 11.5: First eigenfunctions φ1(ν) and variances D(ak) of expansion (11.3) for wind wave spectra.
1: wind sea spectra, 2: double-peaked spectra of combined wave field
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Fig. 11.5 gives estimates for ϕ(ω) and variances

νaD  of coefficients aiν, which were computed using
two kinds of spectra, namely single-peaked
spectra of wind waves and double-peaked spectra
for mixed waves. These two kinds of spectra differ
considerably, but their first eigenfunctions ϕ1(ω)
are not that different (eigenfunctions ϕν(ω) of
higher order being less similar). Variances

νaD decrease rapidly as number ν increases.

A classification of spectra Si(ω, hs) based on a
single parameter, hs or dispersion Dξ, would lead to
difficulties in interpretation of probabilistic
characteristics. A more fruitful approach, which
also leads  to a  better interpretation of results,  is

based on classification with respect to “persistent
conditions”. For example, [Lopatoukhin et al.,
1990] proposed four types of wave generating
conditions for the tropical Pacific, leading to
development of common features in their spectra
(see Table 11.1). Variability of wind wave spectra
within each of the four groups can be expressed
using quantile diagrams as shown in Fig. 11.6. As
can be seen, the main spectral peak Smax(ω) at
frequency ωmax = 0.9 rad/s can vary from minimal
value of 0.4 m2s  to a maximum value of 1.2 m2s
(with median value of 0.9 m2s). ωmax varies from
0.6 to 1.0 rad/s. The secondary maximum at
ω = 0.5 rad/s, which corresponds to swell, can be
as large as S(ω) = 0.5 m2s, and its frequency can
vary in the range of ω ∈  [0.4; 0.6] rad/s.

Table 11.1
Typical frequency spectra for the tropical part of the North Pacific Ocean

Type % Wind,
m/s

Variance,
cm2

Peak No1,
 Rad/s

Peak No.2,
Rad/s

Spectral shape
S(ωωωω),  (m2 s)

ITCZ 40 <6 650-1300 0.4-0.7 0.8–1.1

0.15

1.8

MTW 25 <8 1500-2800 0.4-0.7 0.8–1.1

0.6

2.0

STW 25 8-15 2500-4500 0.4-0.7 0.7–1.0

1.0

2.0

TC 10 >15 >4500 0.4–0.7 

2

2

Note: ITCZ is Inter-Tropical Convergence Zone, MTW is moderate Trade Winds, STW is
strong Trade Winds, TC is tropical cyclone.

[Lopatoukhin, Boukhanovsky et al., 1999] used
long term wave measurements in the Black Sea
and proposed a classification of wave spectra
according to their genesis, i.e. for wind sea, swell

and combined waves (see Table 11.2). They also
determined probabilities of their occurrence and of
consequential transformations between the
different types.
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Table 11.2

Probability of wave types

Wave Subtype Type N Winter Transient
seasons Summer Year

Steep I-1 366 5% 2% 10% 6%
Swell Middle I–2 1037 22% 8% 19% 17%

Slope I–3 1220 – 32% 30% 20%
Wind waves II 1952 47% 27% 22% 32%

Combination
without

Swell III–1 793 16% 15% 8% 13%

separation Wind waves III–2 184 4% 4% 2% 3%
Combination

with
Swell IV–1 427 5% 10% 7% 7%

separation Wind waves IV–2 123 1% 2% 2% 2%
Total 6102 100% 100% 100% 100%

Figure 11.6: A typical wave spectrum generated under the action of strong trade winds
in tropical part of the North Pacific Ocean.

Functional representation of such classes of
spectral densities S(ω) can be made using the
following well known approximation:

S(ω) = Aω--k exp[-Bω--n]                 (11.4)

where A, B, k, n  are parameters reflecting wave
generating conditions.

Mean wave height h  is the only parameter
needed for description of the wind sea. Mean wave

period can be estimated by various relations
[Wind, 1974], (e.g. as in the chapter 10). A single-
peaked spectral approximation (10.4) for swell
depends on two parameters, namely h  and τ .

The combination δ=gτ2/h reflects the non-
dimensional steepness. A complex wave can be
expressed, in the first approximation, as the sum of
spectra:

(11.5)
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The proposed approximation uses spectral
moments and some other related variables. It
makes it possible to represent any spectral density
function S(ω) as S(ω,Ξ), where Ξ denotes a set of
parameters. All operations with such functions
S(ω) inside their class are ones with deterministic
functions (11.1), (11.2) or (11.4) of random
arguments Ξ. For example it is possible to define
the mean spectrum

    ,                     (11.6)

quantile spectrum

,                  (11.7)

and variance of spectra:

(11.8)

In the above expressions Ξ , Ξp stand for sets of
mean values of parameters and their quantiles,

( )ji ,cov,D
i

ξξξ are the variance and covariance of
the parameters, respectively.

The above examples dealt with wave frequency
spectra only. As mentioned at the beginning of this
chapter, a considerable volume of measured and
simulated data is available at present not only for
omni-directional spectra S(ω), but for the

directional spectra S(ω,�) as well. This information
is very important in actual applications.  [Krogstad
et al., 1997; Krogstad, 1998] studied existing
approximations for angular wave energy
distribution and proposed their generalization.

The 3-D pattern of a wave spectrum is particularly
complicated for moderate wave heights. In the
case of a strong storm or “dead” swell the
spectrum is characterized by relatively narrow
directional distribution.

Figure 11.7: Climatic directional spectrum of wave energy for storm conditions in the Barents Sea. It
corresponds to 90%- distribution probability of directional spectra
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Fig. 11.7 shows a climatic spectrum for storm
waves in the Barents Sea. It corresponds to 90%
decile of directional wave energy spectra. Further

studies of directional spectra of different intensities
are needed.

---oooOooo---
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CHAPTER 12

Climatic trends and scenarios

In the preceding chapters we have described in
detail several methods of performing extremal
analysis for wave heights, which can be applied to
any time series of wave data, whether in situ
measurements, satellite estimates or produced
from numerical models. However, by virtue of the
very long temporal extent of the time series
required to produce these long return period
estimates, e.g. 50- or 100-year (or longer) wave
heights, the requirement of stationarity in the data
set may not be met due to changes in the wave
regime caused by climate variability and/or trend. It
is therefore relevant to consider possible
implications of intensification or weakening of
waves on decadal or century time scales for
estimating long return period wave heights.

The first indication that such changes were taking
place in the North Atlantic was given by [Carter,
Draper, 1988] using wave measurements at the
Ocean Weather Stations. Subsequent analysis of
similar data by [Hogben, 1988] showed that such
trends were characteristic for mean wave heights,
but they were not present in maximum wave
heights. [Hogben, 1988] suggested that the mean
wave height trend is explained by some
intensification of background swell, which is
associated with oscillations of the North Atlantic
current.

Subsequently, Bouws et al. (1996) at the
Netherlands Meteorological Institute, using
operational ship routing wave analyses, found
trends in a box west of Ireland (50-55N, 10-20W)
over the period 1961-1987 on the order of 0.3%
per year for both the annual maximum and the
99th percentile wave height. The trend in the 90th
percentile values was larger, 0.7 % per year.
These trends were considered (WASA, 1998) to
suffer from some inhomogeneity, leading to an
artificial increase in wave heights, and thus to be
an upper bound on real trends.

A significant advance on the issue of wave height
variability and trend was made by the project
WASA (Waves and Storms in the North Atlantic
[WASA group, 1998]). Within the WASA project
Gunther et al. (1998) attempted to reconstruct the
time-space wave fields statistics using a proven
wave model driven by a 40-year time series (1955
to 1994) of 6-hourly wind fields for the Northeast
Atlantic ocean. While the wind fields used in the
analysis (Fleet Numerical Meteorological and
Oceanographic Center operational winds, and
Norwegian Meteorological Institute operational

analyses) contained some inconsistencies and
inhomogeneities over the 40-year period of the
hindcast, comparison of the resultant wave fields
with in situ measurements showed reliable results.

Analysis of the resulting wave fields in the
northeast Atlantic showed the existence of areas of
wave growth and decrease. The 90% percentile
value of significant wave height was shown to
increase at 2 cm/year rate in the area to NW of
Scotland, and 1 cm/yr over a wide area extending
from the North Sea through the Norwegian Sea.
The same percentile decreased at rate of 1
cm/year in the open ocean west of Ireland and the
Bay of Biscay. Comparison of the 99th percentile
and maximum wave heights at OWS Mike, and the
Brent and Ekofisk platforms showed the largest
increases in wave height (and wind speed) to be
associated with the maxima, the lowest for the
90th percentiles; this results in a widening of the
distribution. Off the coast of Ireland the increases
are much smaller (1 cm/yr) than those derived by
Bouws et al. (1996) (2.7 cm/yr). This analysis is
also notable in that, when the full 40-year hindcast
period is considered in contrast to the shorter ship
routing analysis, that the trend west of Ireland is
actually decreasing.

WASA (1998) extended the time series of the
hindcast through statistical reconstruction based
on redundancy analysis (RDA; von Storch and
Zwiers, 1998). This technique predicts the
intramonthly wave height patterns based on
monthly mean air pressure patterns. Using this
approach the statistically derived wave heights for
Brent and Ekofisk were generated for the period
1899 to 1994. The reconstruction confirmed the
increase in the 40 years of the numerical hindcast.
What is noteworthy is that the trends were not
apparent when the longer period was considered,
i.e. the reconstructed wave heights from the early
part of the century were similar to those in the last
decades of the hindcast.

Gunther et al. (1998) explicitly looked at trends in
the tails of the distributions, representing the most
extreme events. Extremal analysis was carried out
for each point in the northeast Atlantic for the four
ten-year time slices in the hindcast. A peak-over-
threshold technique (average 5 peaks per year),
using least squares fitting with a Fisher-Tippet III
distribution (at most points) was applied in the
analysis.

The results of this analysis showed clear spatial
patterns. In the area between Scotland and Iceland
the trend in 100-year wave height was increasing
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(exceeding 2m/decade), while this statistic
decreased southwest of Ireland (< 1m/decade).

The trends in storminess were also found in
geostrophic wind analyses by Alexandersson et al.
(1998) for the British Isles, North Sea and
Norwegian Sea. The trends increased significantly
from 1960 onward, but when extended back to the
beginning of the record in 1881 no trends were
apparent.

The WASA project also attempted to predict the
effects on extreme waves of a double CO2
scenario. A time-slice experiment was performed
on two 5-year intervals (Rider et al. 1996). Gunther
et al. (1998) calculated the 20-year return period
wave height on both the control and 2X CO2 runs.
The results were very similar to the patterns found
in the 40-year hindcast, increases south of Iceland,
and decreases southwest of Ireland.

A significant advance in numerical wave hindcasts
resulted from the NCEP/NCAR meteorological re-
analysis project (see, e.g. [Kalnay et al., 1996]),
which produced global data series of great interest
to wave modelling. NCEP reanalysis data were
used in [Swail and Cox, 2000; Cox and Swail,
2000] for both a global reconstruction of past wave
fields, and a detailed wave reconstruction of the
North Atlantic Ocean. The use of the reanalysis
products to drive the wave model removed many
of the inhomogeneities present in earlier data sets;
the further analysis efforts described by Swail and
Cox (2000) for the North Atlantic Ocean removed
still more inhomogeneities, and equally importantly
produced a much finer grid scale analysis which
resolved to a much greater degree both tropical
and extratropical storms. This additional analysis is
critical in the modelling of the most extreme waves,
as selected in the computation of long return
period estimates.

Wang and Swail (2000) analyzed the global model
hindcast results for the Northern Hemisphere. As
in the WASA study, the analysis showed areas of
increasing wave height and corresponding areas of
decrease. In both the North Atlantic and North
Pacific, significant linear trends in the seasonal
extremes (90th, 99th percentiles) were identified.
In the North Atlantic, significant increases in the
northeast Atlantic over the last four decades
(similar to WASA) are matched by significant
decreases in the subtropical Atlantic.

Increases in the 99th percentile wave height in the
area between Scotland and Iceland are typically
0.4 to0.5 %/yr.  In the North Pacific, significant
changes are found in the winter and spring wave
heights, with increases over much of the north
Pacific, and some decrease in the subtropics.
Increases in winter 99th percentile waves of 0.25
to 0.50 %/yr are common across the area.

As in WASA, Wang and Swail (2000) also
extended the time series of the hindcast through
statistical reconstruction based on redundancy
analysis. Statistically derived wave heights were
generated for the period 1899 to 1997. The
reconstruction confirmed the increase in the 40
years of the numerical hindcast for both the North
Atlantic and North Pacific. For both oceans, no
significant trends of seasonal wave extremes are
found for the last century, though significant
changes do exist in the past four decades. There
is, however, significant long-term variability,
especially in the North Pacific.

Analysis of the detailed North Atlantic hindcast,
described by Swail et al. (2000), was carried out by
Swail and Wang (2001). The seasonal patterns
were very similar to those from the global hindcast,
but with generally greater rates of change. In the
North Atlantic hindcast a larger area of significant
decreases of SWH was observed in the western
subtropical Atlantic in winter. Significant increases
are identified off the coast of Canada in summer,
and for the central North Atlantic in fall. These
differences result from the enhanced wind fields for
tropical storms and kinematic reanalysis of wind
fields.

In the North Atlantic study, monthly statistics were
also described. There were large variations from
month to month. Rates of change were generally
larger than for the seasonal analysis.

Extremal analysis was also carried out, as in
WASA. A Gumbel (and Weibull) analysis was
applied for each grid point in the North Atlantic
using a peak-over-threshold-approach. Since the
hindcast covered the entire North Atlantic, and not
just the northeast portion as in WASA, separate
analyses were run on tropical and extratropical
system peaks. Ten- and twenty-year time slices
were analyzed; results of the four 10-year slices for
extratropical storms are shown in Figure 12.1.

Details of the extremal analysis are given in Swail
et al. (2000).  Examination of Figure 12.1 shows
that, while there is some consistency among the
four time slices, there is considerable variability in
the magnitude of the return period wave heights,
and in the spatial patterns of the extremes, as
storm tracks migrate from one position to another.

The decadal time slice extremal analyses done in
both WASA and Swail et al. (2000) are one way to
try and gauge the change and variability of the
most extreme wave conditions. However, the
sample for the trend analysis is necessarily
reduced to four, in a 40-year hindcast. Another
approach which is often taken is to compute time
slices is based on a running sample. As an
example, the 100-year wave based on years 1-10
is computed and assigned to year 10; the 100-year
wave is recomputed for years 2-11 and assigned
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to year 11, and so on. The number of points then
available for the trend and variability analysis is
then (N-(m-1)), where N is the length of the

database (e.g. 40 years) and m is the length of the
slice (e.g. 10 years).

Figure 12.1: Decadal time slice extremal analysis (Gumbel) of extratropical storms

This method is easiest to visualize with the Annual
Maximum method, but can also be used with other
approaches, e.g. peak-over-threshold. An example
of the year-to-year variability and trend in the 100-
year return period wave height at Hibernia is
shown in Fig. 12.2. Two things are immediately
evident from this figure: (1) the 100-year wave
height varies considerably depending on which 10-
year slice it is based on and, (2) the 100-year wave
height has a slight increasing, but statistically
insignificant trend over the sampled time interval.

Another area of important research is the analysis
of different scenarios of climate change and their
implications for wind waves and storm surges. This
is the subject of the project STOWASUS-2100
(STOrm WAves and SUrges Scenarios for the 21st
century,
[http://gate.dmi.dk/pub/project/STOWASUS-2100/])

The project envisages modelling of storm
conditions in the 21st century according to several
different scenarios on the atmospheric CO2
increase. Two 30-year time slice simulations with
the ECHAM4 climate model are performed.
Investigations regarding systematic anomalies in
frequency, intensity or location of extreme events,
and the physical mechanisms responsible for them
are carried out. Preliminary analysis has shown
(STOWASUS-2100, 2nd Progress Report) that
significant wave heights are slightly increased in
the Northeast Atlantic and North Sea region, with
increases in the 99th percentile values at some
locations of almost 10%. Differences in the mean
wave heights between the control run and the 2X
CO2 model run are small, mostly less than 0.15m.

The preceding paragraphs present a bewildering
array of information on trend and variability of
extreme wave conditions. Trends may be either
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increasing or decreasing; similarly, the variability
may be increasing or decreasing. The
uncertainties in the estimates of variability can be
large. This presents something of a dilemma in
how to account for such changes. Are these
changes the result of anthropogenic climate

change, which can be expected to continue? Or
are they merely part of the natural variability of the
atmosphere-ocean system, which can be
accounted for if the sampling period is sufficiently
long?

Figure 12.2:  100-year return period wave height variations. Hibernia

The basic issue for the analysis of long-term data
series or simulation output is the significance of
trend estimates. Various statistical models can be
used to estimate the trends. The simplest model is
parametric linear regression

(12.1)

where b0, b1 are parameters and ε denotes white
noise.

If the white noise ε, which in fact is the deviation of
annual averages from the trend, is Gaussian, then
it is possible to use the following relations to
estimate parameters in (12.1):

(12.2)

For data series of finite length the estimates (β0,
β1) for parameters (b0,b1) represent a system of
random values. Let us introduce a new notation:

(12.3)

Using it we can represent a two-dimensional
confidence range (1–α)% for values (β0, β1) as the
internal part of the ellipse

(12.4)

and express the solution in variables (γ0,γ1). The
roots of the equation are

(12.5)

where )1,,p(FpSc 2 αν −= , p=2, ν=n–p and α is
the confidence level. They determine the
orientation of the ellipse main axes.

If the point (βo,0) is covered by the (1–α)%
confidence limit ellipse, we can say that the
significant criterion for the trend is satisfied. Then
we can assume that the original data series is
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stationary. If the criterion is not satisfied, the series
is not stationary.

More detailed quantitative analysis of trends in the
parameters of probability distributions requires

processing of mixture of various distributions,
which goes beyond the scope of this review.

Importantly, possible existence of trends in the
data series does not alter basic conclusions of this
review.

---oooOooo---
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KEY TO SYMBOLS

a Scale parameter of the first-limit (Gumbel)
distribution

aT Scale parameter of extrapolation of the
first-limit (Gumbel) distribution to a T-year
return period

b Position parameter of the first-limit
(Gumbel) distribution

bT Position parameter of extrapolation of the
first-limit (Gumbel) distribution to T-year
return period.

m
nC  Number of combinations from n to m

S,C  Angular moments
c Crest height
cf Colligation coefficient
Dx(• ) Variance of function x
erf The error function
f Nonlinear functional transformation
f(• ) Probability density function
F(• ),G(• ) Distribution function
Fm(• ) Distribution of extreme element in a

sample.
F*(• ) Estimate of distribution function
G(• ) Quantile function, distribution function
h Wave height (individual or recorded at a

synoptic observation time)
h  Mean wave height recorded at a synoptic

observation time
hs Significant wave height recorded at a

synoptic observation time
hmax  Highest wave height (individual or

recorded at a synoptic observation time)
hws Wind wave height recorded at a synoptic

observation time
hsw Swell height recorded at a synoptic

observation time
h+ Highest wave height in a storm recorded at

a synoptic observation time
h Lowest wave height in weather window

recorded at a synoptic observation time
hb Height of breaking wave
hp P% quantile of wave height distribution
h0.5 Median of wave height distribution at a

synoptic observation time

h  Monthly mean wave height

maxh  Seasonal maxima of monthly mean wave
height

ph~  p% probability quantile of annual maximum
distribution

)T(
max

)T( h,h  Estimated extreme wave heights at T-
year return period.

)T(
kh  Estimate of kth annual maximum at T-year

return period
H Water depth
Kx(• ) Correlation function of process x
mx(• ) Mathematical expectation of the function x
M[• ] Operator of mathematical expectation
Me[• ] Operator of median
m00 Zero – order moment of spectrum
n!  Number of conditionally independent

observations
p Probability
s Scale parameter of log-normal distribution

of wave heights at synoptic times
Sx(• ) Spectral density of process x
t Time
tb Time of storm commencement
tm Time at which maximum wave height h+

was observed in a storm
te Time of storm end
u(• ) Non-dimensional deterministic impulse
Up Quantile of normal distribution N(0,1) of

p% probability
w(• )  Deterministic impulse with random

parameters
W(•) Stationary random process
Z Threshold for wave height selection
α Covariance function decay decrement
β Direction of waves
δ Skewness of a storm
∆t Time series discretization or time step
ε White noise
λ Parameter of Poisson distribution and of

storm number distribution
ρ Correlation coefficient
σ Standard deviation, r.m.s. deviation
τ Wave period
τ  Mean wave period
τp  Wave period at spectral peak
ℑ  Storm duration
ϕ Latitude.
φ Auto-regression parameter.
Φ Normal (Gaussian) N(0,1) distribution

function
θ  Longitude
Θ Duration of weather window
ζ, ξ, η Centered time series
Ξ Storm parameters (h+,h,ℑ , Θ).
ω Angular frequency.
ω  Mean angular frequency.
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