
1. Introduction
Sea ice plays a key role in the Arctic climate system (Bhatt et al., 2014; Leppäranta, 2011; Maslowski et al., 2012; 
Thomas, 2017; Weeks & Ackley, 1986; Weiss, 2013). It modulates important momentum, heat, and material 
transfer processes between the ocean and the atmosphere (Squire, 2020; Thomson et al., 2018; Timmermans 
et al., 2018). Given the sensitivity of the sea ice cover to global warming trends, the observation and modeling of 
sea ice are critical for understanding global climate, including monitoring the drastic changes in the Arctic and 
assessing possible future climate scenarios.

Earth system models typically characterize sea ice as a continuum with viscous-plastic rheology primarily through 
ice concentration, volume, and thickness (Hibler, 1979; Hunke & Dukowicz, 1997; Tremblay & Mysak, 1997). 
While this traditional modeling approach yields realistic results at the basin scale, at scales of 𝐴𝐴  (10) km and 
smaller, sea ice exhibits brittle behavior with the motion of individual fragments deviating from a continuum 
description. In this case, the discrete element method (DEM) (Cundall,  1988; Cundall & Strack,  1979; Hart 
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areas are frequently obscured by clouds, leading to missing observations of the ice floes. Traditional methods 
of filling in these gaps in the data set have issues. Linear interpolation, which averages between available 
observations to fill in missing ones, fails to recover the curvature of the floes. Dynamical interpolation methods, 
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presents a nonlinear dynamical interpolation framework for recovering missing floe observations, which is both 
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Beaufort Sea. These results can provide complete data sets that advance our understanding of Arctic climate.
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et al., 1988), which characterizes the trajectories of individual ice floes, as opposed to clusters of ice, becomes 
the natural choice to describe sea ice dynamics. Compared to continuum models, the modeling of individual floes 
provides a richer representation of sea ice dynamics through local interactions with the oceanic and atmospheric 
components (Lindsay & Stern, 2004; Tuhkuri & Polojärvi, 2018). In addition, since the DEM models are devel-
oped under Lagrangian coordinates, there is no need for an advective transport scheme to move floes between 
grid cells as in continuum models, significantly reducing computational costs. The DEM models can also change 
the spatial resolution as the geophysical situation requires, allowing greater flexibility in the study of sea ice.

The unique advantages and wide applications of models based on the DEM highlight the need for observa-
tional sea ice data within the Lagrangian framework. Observed floe trajectories facilitate the development and 
calibration of DEM models and provide insight into the evolution of sea ice properties. However, despite the 
increase in satellite missions and the improved techniques in acquiring remote sensing observations, most exist-
ing observational products are based on Eulerian descriptions of the sea ice drift field. Exceptions include the 
Arctic Ocean Sea Ice Drift Reprocessed (Ardhuin & Prévost, 2020) and the Making Earth System data records 
for Use in Research Environments (MEaSUREs) programs (Kwok,  1999). Yet, these measurements cannot 
adequately resolve sea ice motion at small scales due to the spatial resolution (31.25 km for Arctic Ocean Sea 
Ice Drift Reprocessed product) or the sampling frequency (3-day interval for MEaSUREs) of the data. On the 
other hand, in situ field measurements using buoys on ice floe surfaces have provided invaluable information. 
However, trajectories are often sparse (Brunette et al., 2022; Gabrielski et al., 2015; Hutchings et al., 2012; Itkin 
et al., 2017; Lei et al., 2020), with coastal regions undersampled relative to the central Arctic.

Recently, a new Lagrangian floe tracking algorithm, called the Ice Floe Tracker (Lopez-Acosta et al., 2019; Wolfe 
et al., 1998), was developed and applied to optical satellite images. It creates Lagrangian sea ice measurements in 
the low-sampled regions between the ice pack and the open ocean, commonly known as the marginal ice zones 
(MIZ). This data set was the first of its kind in that it provides not only the Lagrangian trajectories but also the 
floe sizes and geometries together with the angular displacements of floes in the MIZ extending throughout the 
21st century. Given the demonstrated link between floe rotation rates and the characteristics of the underlying 
small-scale ocean eddies in the Beaufort Gyre MIZ, these sea ice floe observations have proved to be essential for 
recovering the state of the underlying turbulent ocean field, providing a unique insight into the multi-scale nature 
of the ocean (Manucharyan et al., 2022).

Atmospheric noise is visible in optical images and leads to many 1- or 2-day gaps in the retrieved trajectories 
within the Lagrangian Ice Floe Tracker data set. See Figure 1 for an example. A commonly used approach to 
filling these gaps is to interpolate between the available observations through linear interpolation (Manucharyan 
et al., 2022). These trajectories (and their curvature) are used to characterize ocean circulation/eddy behavior. 
However, such an approach ignores the MIZ dynamics, leading to trajectories lacking many physical properties. 
Linear interpolation also fails to retrieve the curvature of the trajectories, which is essential for characterizing the 
turbulent ocean flow field within the meso/submeso-scale range in polar regions. Alternatively, physics-based 
dynamical interpolation incorporates both the available partial observations and knowledge of the coupled 
atmosphere-ocean-floe dynamics. While the resulting interpolated trajectories are expected to reflect reality 
better, traditional dynamical interpolation approaches are often extremely slow and computationally expensive 
due to the high dimensionality and nonlinearity of the underlying system (Branicki et  al.,  2018; Grooms & 
Majda, 2013).

This paper presents an efficient and statistically accurate nonlinear dynamical interpolation framework for 
recovering the missing floe observations in Lagrangian trajectories. It exploits a balanced physics-based and 
data-driven construction to address the challenges posed by the high-dimensional and nonlinear nature of the 
coupled system. This new method involves a sequential prediction-correction procedure. The error from predict-
ing the missing values in the coupled atmosphere-ocean-floe system is mitigated by incorporating the availa-
ble observations of floe positions and orientations via Bayesian inference. One crucial feature of the presented 
framework is that it exploits a data-driven reduced-order stochastic modeling strategy to advance the statistical 
forecast of the atmosphere and ocean fields, which are the underlying driving forces of the sea ice motion, but 
are not considered by the direct curve-fitting algorithms. Particularly, these simple stochastic models describe 
the time evolution of the leading spectral modes of the atmosphere and ocean fields, where effective stochastic 
forcing is adopted to characterize the fluctuations at the unresolved scales. Therefore, the resulting surrogate 
models significantly reduce the computational cost at the forecast step, which is the most time-consuming part in 
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traditional dynamical interpolation approaches. It is worth highlighting that closed analytic formulae are available 
for expressing the statistics associated with these simple stochastic models, facilitating the systematic and effi-
cient data-driven model calibration. The calibrated models succeed in accurately predicting the atmosphere and 
ocean states and the associated uncertainty. The latter is crucial in reaching the least biased state estimate using 
nonlinear dynamical interpolation, especially in the presence of strong turbulence, which is again completely 
missed by deterministic curve fitting methods. In addition, the framework allows for the simultaneous estimation 
of several critical physical parameters that cannot be directly inferred from satellite images but are essential for 
dynamical interpolation, such as the thickness of each floe, using only relatively short floe trajectories.

The rest of the paper is organized as follows: It starts with the development of the physics-based data-driven 
dynamical interpolation framework. Then the new method is tested on both a synthetic data experiment and the 
real data set of floe trajectories in the Beaufort Sea MIZ. The focus here is on the noninteracting floes, but the 
framework can be easily extended to the interacting ones. The study also includes analysis of the resulting inter-
polated Lagrangian ice floe trajectories and angular displacements as well as the recovery of several key physical 
properties of the floes and their associated statistics. The recovered floe trajectory utilizing the traditional linear 
interpolation approach will serve as a benchmark solution.

Figure 1. Sea ice floes in the Beaufort Sea marginal ice zones (MIZ). Top panel: Representative Moderate Resolution 
Imaging Spectroradiometer True Color image (downloaded from the NASA Worldview application) displayed in a WGS 84/
NSIDC Sea Ice Polar Stereographic North 70″ N projection. For only this figure, the image is oriented 90° from standard 
Polar Stereographic coordinates so that the top of the image is roughly north. The red box outlines the region of interest. 
Bottom panels: The observed MIZ of the Beaufort Sea (the box area of the top panel) is shown on three consecutive dates 
(26–28 June 2008). Identified floes are contoured with red. On 27 June 2008, the atmospheric noise acts to blur ice floe 
contours impeding the effective identification of most of the floes.
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2. The Reduced-Order Modeling and Nonlinear Dynamical Interpolation Framework
This section presents an overview of the new modeling and nonlinear dynamical interpolation framework 
consisting of four key steps. The technical details of the model, the data, and the methods are included in the 
Appendices A–C.

This framework works with a coupled atmosphere-ice-ocean system. While this system can take the form of a 
coupled dynamical model, the framework also allows the atmospheric and/or oceanic components to be given 
as numerical data. Here, a DEM model is used to characterize the sea ice dynamics, where the individual floe 
shapes and sizes are drawn from a library of floe observations in the Beaufort Gyre MIZ (Lopez-Acosta & 
Wilhelmus, 2021). Given that the observations contain only nearly noninteracting and shape-preserving floes, 
the ice floe motion can be assumed to be mainly driven by oceanic and atmospheric forcing, which are calculated 
from surface integrals over floe shapes. The ocean component is given by a two-layer quasi-geostrophic (QG) 
model that generates eddies from baroclinic instabilities, the so-called Phillips model (Vallis, 2017), in which 
the cumulative impact of many passing floes on the turbulent eddy field is represented via a quadratic surface 
drag. The model has been systematically calibrated to capture the key features of the interaction between the 
Arctic Ocean and the ice floes. The optimization criterion used here is to match the simulated and observed 
scale-dependency of the floe rotation variance, where the bulk vertical shear of the background horizontal veloc-
ity, the deformation radius, and the effective ratio between the top and bottom layer depths are the tuning param-
eters. See Manucharyan et al.  (2022) for the detailed calibration strategy. The spatial resolution is 128 × 128 
gridpoints. Because of the high latitude, the deformation radius is small—on the same order as the model resolu-
tion. Despite potential unresolved effects, their impact is mitigated by the relatively large floe areas and statistical 
averaging of the dynamical interpolation. The atmospheric component is taken from a reanalysis product (ERA5) 
(Copernicus Climate Change Service (C35), 2017; Olauson, 2018), which provides Eulerian wind velocity fields 
over the observational period. As the wind field exhibits larger-scale features, a coarser spatial resolution of 
11 × 11 gridpoints is used. Note that the focus here is in the MIZ of the Beaufort Sea (see Figure 1). Hence, a 
double-periodic boundary condition is adopted for simplicity. The potential model error and bias introduced from 
the various approximations can be mitigated at the statistical forecast stage using the stochastic corrections and 
Bayesian inference in the framework introduced in the rest of this section. The domain size, as shown in Figure 1, 
is roughly 600 × 600 km. Figure 2 includes a schematic illustration of the main steps of the framework.

Step 1. Development of low-cost data-driven reduced-order stochastic models

The ensemble forecast adopts a probabilistic characterization of the model state and is thus a natural way to 
predict complex turbulent systems (Leutbecher & Palmer, 2008; Palmer, 2019; Toth & Kalnay, 1997). However, 
the high dimensionality and nonlinearity of the coupled atmosphere-ice-ocean system make a single realization 
of the model forecast very computationally expensive, let alone the forecast of the entire ensemble. Therefore, the 
first step in this framework is to develop data-driven reduced-order models with the aim to significantly lower the 
computational cost of the forecast step.

The top section of Figure 2 outlines the development of such reduced-order models for the turbulent ocean field. 
Given a long simulation generated from the original two-layer QG ocean model, the spectral decomposition of the 
velocity field is used. Most of the energetic modes are concentrated within a circular area centered at k = (0, 0) 
with a relatively small radius in spectral space |k| ≤ K, where k = (k1, k2) is the spectral index. The reduced-order 
model is set up to only describe the temporal evolution of the dynamics of this small set of spectral modes. It is 
expected to retain most of the key features of the original ocean field but significantly lower the computational 
cost. Yet, given the nonlinearity of the original ocean model, the governing equation of each spectral mode is fully 
coupled with all other modes, including those omitted in the reduced-order model. To effectively characterize the 
temporal evolution of each spectral mode in the reduced-order model, a linear stochastic model is developed as 
a surrogate (Gardiner, 2009),

d𝑢𝑢

d𝑡𝑡
= (−𝑎𝑎 + 𝑖𝑖𝑖𝑖)𝑢𝑢 + 𝑓𝑓 + 𝜎𝜎�̇�𝑊 𝑊 (1)

where u is a complex variable for a single spectral mode, a and ω are the damping and oscillation frequencies, 
respectively, f is the forcing of the system, 𝐴𝐴 �̇�𝑊  is a complex-valued white noise, and σ is the amplitude of the 
noise. In Equation 1, damping and stochastic noise are adopted to parameterize the contribution of the extremely 
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Figure 2. Schematic diagram of the new method. Panels (a)–(f): A spectral decomposition is applied to the output of a 
complicated ocean model. Only a small set of the most energetic spectral modes are retained. The governing equations of 
these energetic modes are modeled by the low-cost linear stochastic models, thereby significantly reducing the computational 
cost. The illustration also compares the true ocean flow field and its reconstructed state. The original field is generated from 
the two-layer quasi-geostrophic (QG) model, while the reconstructed one only uses modes for which |k| ≤ 11. The top right 
corner compares the time series of the mode k = (5, 5) associated with the QG model and a random realization from the 
calibrated linear stochastic model. Panels (g)–(h): The dynamical interpolation is performed via nonlinear data assimilation. 
The traditional method requires running the original system in the physical space and is extremely expensive. Here, x, u and 
α denote the ice floes, the ocean and the atmospheric state variables, and the model parameters, respectively. In contrast, the 
new and efficient method for dynamical interpolation alternates between physical and spectral spaces using the reduced-order 
stochastic models. It has the main benefit of allowing for the simultaneous estimation of state variables and key physical 
parameters.
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complicated, nonlinear, and deterministic part of the original governing equation, which leads to a cheaper and 
more effective way to reproduce the statistical forecast results (Berner et al., 2017; Branicki et al., 2018; Farrell 
& Ioannou, 1993; Majda, 2016; Majda & Chen, 2018; Qi & Majda, 2018). Independent linear stochastic models 
are used to characterize the temporal evolution of each mode in spectral space, which nevertheless allows a fully 
correlated spatial pattern in physical space. Since the QG model generates an incompressible flow field, the 
spectral representation of the ocean is based on the stream function. Similarly, a pair of linear stochastic models 
is utilized to approximate the two-dimensional velocity components associated with each spectral mode of the 
atmospheric wind field.

Note that despite the independence between the linear stochastic models for different Fourier modes, a strong 
correlation still exists between the state variables in physical space after the spatial reconstruction via the inverse 
Fourier transform. The simple structure of the linear stochastic model allows for systematic model calibration 
and large computational savings, making an ensemble forecast feasible. It is worthwhile to highlight that the most 
important factor impacting the performance of the dynamical interpolation is the leading-order statistics of the 
ensemble forecast rather than the dynamics of individual model trajectories. In this way, because the independent 
stochastic models are accurate with respect to the statistics of the QG model, the forecast produces good results.

Step 2. Systematic model calibration

The linear stochastic model in Equation 1 can be calibrated systematically by taking advantage of the analytic 
formulae for its four fundamental statistics: the mean, the variance, and the real and imaginary parts of the decor-
relation time. The values of these four statistics have a unique one-to-one correspondence with the four parame-
ters: a, ω, f, and σ. Therefore, once the values of these statistics are computed numerically from the time series of 
a single spectral mode in the original QG ocean model, these values are plugged into the closed analytic formulae, 
determining the four parameters in the linear stochastic model associated with that spectral mode.

Rather than simulating the 30,000 modes of the two-layer QG model, setting K to be 11 in step 1 of the framework 
results in a reduced-order model containing only about 400 modes. This simulation still resembles the full QG 
system while being much more computationally inexpensive, and roughly 30 times faster, see panels (a) and (b) 
of Figure 2. In addition, after applying the proposed calibration procedure, a random realization of the time series 
from the linear stochastic model is also statistically similar to the truth by capturing the mean, variance, and decor-
relation time. See panels (c) and (d) of Figure 2 for a comparison of mode (5, 5). This similarity is essential for 
an accurate ensemble forecast using the linear stochastic reduced-order models. Finally, the same linear stochastic 
models are adopted as surrogate models to describe the atmospheric wind field based on the ERA5 reanalysis data.

Step 3. Physics-based dynamical interpolation via nonlinear data assimilation

Dynamical interpolation exploits the optimal combination of the ensemble forecast from the model and the infor-
mation from the partial observations via nonlinear data assimilation. The incorporation of the underlying dynam-
ics sets dynamical interpolation apart from pure curve fitting methods. The basic dynamical interpolation scheme 
used here is the ensemble Kalman smoother (EnKS), in which an ensemble of model trajectories represents the 
estimate of the system state. Each ensemble member contains trajectories for all state variables, including the sea 
ice, the ocean, and the atmosphere. The EnKS provides point estimates through the ensemble mean and quantifies 
the uncertainty through the ensemble spread. The resulting distribution is called the posterior distribution, which 
contrasts with the prior distribution solely obtained from the forecast step of the model.

The traditional EnKS contains a straightforward prediction-correction loop in physical space that requires 
repeatedly integrating the expensive original dynamical model. In contrast, the new method here uses the linear 
stochastic models to approximate the ocean and atmospheric flow fields, and the prediction-correction procedure 
alternates between the physical and the spectral spaces. Specifically, the prediction of the ocean and atmospheric 
flow fields, which involves running the linear stochastic models forward, is implemented in the spectral space. 
On the other hand, the correction of all the state variables, which applies the Bayesian formula that optimally 
combines the model and observational information, is carried out in the physical space. Spectral decomposition 
and flow field reconstruction are adopted after each correction and prediction step, respectively, see panels (g) and 
(h) of Figure 2. Since only a few spectral modes are involved in the sequential prediction-correction procedure, 
the computational efficiency is preserved. Note that the DEM sea ice model remains highly nonlinear, which 
makes the entire dynamical interpolation nonlinear. To further improve the numerical stability and mitigate erro-

 19422466, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003218, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

COVINGTON ET AL.

10.1029/2022MS003218

7 of 23

neous spurious long-term correlations, localization and fixed lag strategies are incorporated into the basic version 
of the EnKS (Anderson, 2012; Evensen, 2009).

Each set of floe observations is processed sequentially in time. The algorithm represents the model state with an 
ensemble of model trajectories. During the prediction correction loop, the ensemble is forecast forward in time 
up to the next available observation. The sea ice variables are forecast in physical space according to the sea ice 
model. The ocean and atmosphere variables are forecast in spectral space according to the statistically accurate 
stochastic forecast models. After the forecast of the ensemble, all variables are transformed back to physical 
space  where they are compared to the observations in the analysis step. The ensemble is updated, in a Bayes-
ian  sense, according to the new observations. Finally, the ocean and atmosphere variables are transformed back 
to spectral space for the next iteration of the loop.

Step 4. Efficient parameter estimation of important physical quantities

The main practical challenge of using general dynamical interpolation methods to analyze the sea ice cover is the 
lack of access to the entire parameter space from a single remote sensing instrument. For example, the thickness 
of the floes determines the inertia of floe motion and is crucial to the coupled system. To overcome this challenge, 
an efficient parameter estimation algorithm is embedded into the dynamical interpolation framework. Here, the 
unobserved physical quantities are treated as the augmented state variables, which are simultaneously estimated 
with the actual variables of the model state. The uncertainty in the estimated parameters, due to the relatively 
short Lagrangian trajectories, is also quantified in the algorithm. See Appendix E.

3. Results of Interpolating the Floe Trajectories and Angular Displacements
3.1. Setups of the Two Experiments

The new dynamical interpolation framework is first applied to a synthetic data experiment and then to the real 
observation scenario.

The synthetic data experiment uses the two-layer QG ocean model and the reanalysis data for the atmospheric 
winds to force the ice floes governed by the DEM model. The ice floe shapes, sizes, positions, and orientations 
are initialized from a library of floes in the Beaufort Gyre MIZ (Lopez-Acosta & Wilhelmus, 2021), which is 
generated from optical remote sensing imagery using the Ice Floe Tracker algorithm (Lopez-Acosta et al., 2019). 
The thickness of each floe is randomly drawn from a background distribution (Kwok, 2018) and is assumed to 
be constant during the entire observational period, see panel (c) of Figure 4. Note that the stochastic approximate 
models are not utilized to generate the synthetic data; rather, they are only used to dynamically interpolate the 
missing floe observations. For the real data experiment, Lagrangian sea ice floe trajectories are obtained using 
the Ice Floe Tracker algorithm within the study area delineated in Figure 1 during the spring-to-summer transition 
of 2008. The same linear stochastic models that are calibrated for the synthetic data experiment are adopted to 
carry out the dynamical interpolation. See Table 1 for the summary of the models used to generate the true signal 
and those adopted to implement the dynamical interpolation in the two experiments.

The floe locations and angular displacements are the only observational information in the dynamical interpola-
tion for the coupled atmosphere-ice-ocean system. These two quantities are obtained from the satellite images at 
a frequency of roughly every 24 hr. The observational uncertainty, which is used in the dynamical interpolation 
algorithm, is set to be 0.25 km and 5°, respectively.

Both experiments contain 38 floe trajectories of various lengths in time, see the bottom panel of Figure 3. Exclud-
ing the first and the last point in each floe trajectory, in total, there are 164 remaining candidate observational 
points for the 38 trajectories. These 164 candidates are randomly divided into four sets, where each set contains 
41 data points. Then four independent dynamical interpolation simulations are carried out. In each simulation, 
the 41 candidate observations in the corresponding set are artificially removed as the missing observations. 
Note that the missing observations referenced in the real data experiment are not the actual missing ones in the 
satellite images obscured by clouds, but are rather the artificially removed ones. Such a setup guarantees that 
the true values of these missing floes are known, and therefore it allows the qualitative study of the accuracy 
of the  dynamical interpolation. Nevertheless, this 3:1 ratio between the number of observed and missing floe 
observations mimics the real-world situation in the MIZ during the boreal summer. The number of ensemble 
members used here is 600.
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Figure 3 displays the 38 sea ice floe trajectories in the real data experiment, which are retrieved from satellite 
remote sensing imagery using the Ice Floe Tracker algorithm during the spring-to-summer transition of 2008. 
Each floe trajectory is represented by the transition from fully transparent to opaque, with each floe assigned a 
specific color. The index in these floes corresponds to those in Figures 5 and 7.

3.2. Results of the Synthetic Data Experiment

Figure 4 illustrates the parameter estimation of the floe thicknesses from the dynamical interpolation. To quantify 
the uncertainty in the estimated thickness of each floe, the posterior distribution characterized by the ensemble 
members is also included via a violin plot. The results shown here are calculated using all the ensemble members 
from the four simulations, but different simulations lead to similar distributions for all the floes. The estimations 
are overall reasonably accurate, especially given such a small number of observations within a large domain. 
Particularly, the truth of all the 38 floes is consistently covered by the posterior distribution. In addition, for 
two-thirds of the floes, the true thickness value lies in a high likelihood region of the distribution within one 
standard deviation from the mean. Note that the error in the thickness estimation can offset the error from recov-
ering the atmosphere and ocean flow fields, and therefore the overall interpolation results remain accurate, as 
will be seen below. It is worthwhile to highlight that both the background thickness distribution, from which the 
true thickness values are drawn, and the estimated posterior distributions, exhibit strongly fat-tailed non-Gaussian 
behavior, as is clear in the violin plot. These non-Gaussian features are the unique outcome of the highly nonlin-
ear dynamics of the sea ice floes. In addition, because the ensemble is transformed from the prior distribution 
to the posterior during each update of the nonlinear EnKS, rather than resampled, these important non-Gaussian 
features can be preserved through the ensemble update (see the Appendix D.) By contrast, simply considering the 
ensemble mean and standard deviation would underestimate the likelihood of large floe thicknesses while simul-
taneously overestimating the likelihood of small thicknesses. Notice that such a non-Gaussian feature is found 
in all model variables but is especially illustrated by thickness estimation. These findings imply the necessity of 
incorporating both the nonlinear sea ice dynamics and the nonlinear data assimilation scheme into the dynami-
cal  interpolation framework.

Panel (a) in Figure 5 compares linear and dynamical interpolation for recovering the floe location and angu-
lar displacement. The ensemble mean estimate using the dynamical interpolation almost always outperforms 
linear interpolation in recovering the floe locations. Specifically, the absolute error using the linear interpola-
tion is nearly three times as large as that using the dynamical interpolation. The linear interpolation also, by 
design, completely fails to recover the curvature and the nonlinear evolution of the floe trajectories. In contrast, 
the dynamical interpolation accurately captures these important physical features. In addition to the point esti-
mate using the ensemble average, the ensemble provides the quantification of the estimated uncertainty. The 

Atmosphere Ocean Sea ice

(a) Synthetic data experiment

Truth ERA5 reanalysis Two-layer QG The known DEM model

Interpolation Calibrated LSM Calibrated LSM The known DEM model

(b) Real data experiment

Truth Not needed Not needed Satellite observations

Interpolation Calibrated LSM Calibrated LSM The known DEM model

Note. In each experiment, the first row “truth” stands for the underlying systems that generate the true signal, while the 
second row “interpolation” indicates the model used for dynamical interpolation. The same calibrated linear stochastic 
model (LSM) is utilized for the real data as for the synthetic data experiments. In the real data case, the true signals of the 
atmosphere and ocean components are not needed. In the synthetic data case, the true atmosphere and ocean models are used 
to drive the DEM model to generate the observed floe trajectories and angular displacements.

Table 1 
Summary of the Models Used for Both the Synthetic and the Real Data Experiments
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uncertainty overall remains at a relatively low level, indicating the confidence of the posterior mean estimate. 
Among all the 164 recovered missing observations, roughly 80% of the true observations fall within two stand-
ard deviations around the ensemble mean estimate. This implies the accuracy and robustness of the dynamical 
interpolation. In addition, the recovery of the angular displacement using the dynamical interpolation is quite 
accurate.

Panel (a) of Figure 6 illustrates the recovered ocean field represented by the stream functions utilizing the dynam-
ical interpolation. The result shown here is on a specific day in the middle of the entire time period. The accuracy 
in recovering the ocean field remains in a similar level on other days. The overall pattern correlation between the 
truth and the recovered ocean field is around 0.3. Nevertheless, given the fact that there are only 17 floes inside 
this large domain on this day, the skill of recovering the ocean field is already significant. In particular, the ocean 
eddies are recovered quite reasonably in the areas where the observed floes are concentrated. The pattern correla-
tion is above 0.3 and the amplitude of the recovered eddies is similar to the truth. This is partially due to the use of 
the localization technique in the dynamical interpolation, where each observation affects the ability to recover the 
ocean in the nearby regions. The Appendix F includes a more sensitive analysis, which shows the improvement 
of the recovered ocean field if the density of observed floes increases.

Figure 3. Sea ice floe trajectories retrieved from optical satellite remote sensing imagery. Moderate Resolution Imaging 
Spectroradiometer True Color images (downloaded from the NASA Worldview application) acquired on the 25th and 30th of 
June, 2008 are displayed in a WGS 84/NSDIC Sea Ice Polar Stereographic North 70″ N Projection, on top of which retrieved 
ice floe trajectories are displayed in color. In both images, the evolution of floe positions is represented as a shift in opacity 
from transparent to opaque objects. Final floe positions are marked using black contour lines. Note that the recovered floe 
trajectories have different lengths and periods. Information regarding the acquisition period of each floe trajectory is shown in 
the bar plot underneath. Only a subset of the 38 noninteracting floes used in this study are shown for clarity.
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3.3. Results of the Real Data Experiment

Panel (b) of Figure  5 includes four cases of the recovered missing floes on the real data set. Similar to the 
conclusion from the synthetic data experiment, the dynamical interpolation being applied to the real data set also 
shows significant advantages over the linear interpolation in the sense that the error in the ensemble mean is 
overall much smaller and the uncertainty can be systematically quantified. Comparing with the analogs from 
the synthetic data experiment in Panel (a), the accuracy of the results in the real data test remains comparable. 
Figure 7 includes additional case studies of the recovered missing floe trajectories from the real data experiment. 
Again, the dynamical interpolation provides reasonable results in most of the cases. Panel (b) of Figure 6 displays 
the recovered ocean field on July 1, 2008. Although there is no true solution for the validation of the point-wise 
recovery skill, the overall flow amplitudes as well as the number and the size of the eddies in the recovered ocean 
field all look reasonable. One interesting finding is that the recovered ocean field in the north-east corner of the 
domain is nearly zero due to high uncertainty, which corresponds to the area beneath the large piece of the ice 
cover shown in Figure 3.

Figure 8 compares the physical properties of the recovered ice floes between the real observations, the dynami-
cally interpolated data, and the direct model simulation. Since the data set consists of discrete observations, the 
two metrics used are the discrete curvature and the daily angular displacement. The former is calculated using the 
circumscribing circle of each trio of observations, while the latter is obtained by taking the difference in angle 

Figure 4. Parameter estimation of sea ice thickness in the synthetic data experiment. Panels (a) and (b): The black dots and solid lines indicate the truth and the 
ensemble mean estimate of each sea ice floe, respectively, while the shaded area in the violin plot indicates the estimated non-Gaussian PDF formed by ensembles. 
Panel (c): The background sea ice thickness distribution. The true value of the thickness for each sea ice floe is randomly drawn from such a distribution. It is also used 
as the initial distribution in the parameter estimation algorithm.

 19422466, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003218, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

COVINGTON ET AL.

10.1029/2022MS003218

11 of 23

between two consecutive observations. The results using the linear interpolation are omitted here, as the linear 
interpolation fails to provide any useful information of these two physical quantities. Panel (a) shows that the 
curvature of the floe trajectories from the direct model simulation is severely underestimated, which is a natural 
outcome of the model error. In contrast, the data resulting from the dynamical interpolation succeeds  in reproduc-
ing the non-Gaussian distribution of the observed truth with a one-sided fat tail. Next, with respect to the angular 
displacement, as is shown in Panel (b), the real data set has a negative bias due to the influence of the Beaufort 
Gyre, something which is not reflected in the direct model simulation that is again due to the model error. Never-
theless, such a bias in the direct model simulation is almost fully corrected in the dynamically interpolated data 
with the help of partial observations. These results indicate the importance of utilizing both the observations 
and a suitable model in the dynamical interpolation, as the model provides at least partial access to the crucial 
underlying nonlinear dynamical information. In contrast, the observations can largely reduce the biases from the 
model forecast.

Figure 5. Comparison of recovering the missing observations using linear and dynamical interpolation schemes. The 
top panel illustrates the procedure of performing the interpolation experiments. A floe trajectory is first retrieved from 
the satellite imagery. Next, the observed floe on a specific day is artificially removed. The linear/dynamical interpolation 
framework is applied to recover this artificially removed observation. In the bottom part, panels (a) and (b) show the results 
from the synthetic and the real data experiments, respectively. In each panel, the top part shows the interpolated floe locations 
while the bottom part shows the interpolated angular displacement. Since the floes in the synthetic data experiment are taken 
from the library of sea ice floe observations, floes with the same index in the two experiments are identical (i.e., shapes and 
sizes are retained). In addition to the ensemble mean estimate presented by the blue marker, the uncertainty resulting from 
the dynamical interpolation is provided by the shaded areas. For the illustration purpose, only the two-dimensional Gaussian 
confidence interval is used to characterize the uncertainty in the dynamical interpolation.
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4. Conclusions and Discussion
Model error is inevitable when studying complex systems. In the dynamical interpolation framework developed 
here, the sea ice DEM model remains highly nonlinear while the ocean and atmospheric components are effec-
tively approximated by linear stochastic models. Indeed, a significant error will appear if these linear stochastic 
models are used to study the dynamics associated with the ocean and atmospheric fields. Nevertheless, for the 
purpose of dynamical interpolation, the information needed from the model is merely some prior knowledge of 
the short-range statistical forecast of these fields, which are usually quite accurate due to the fact that these linear 
stochastic models are carefully calibrated.

The reduced-order models in the proposed framework are not limited to linear stochastic models. If the time 
series of the underlying flow fields exhibit strong non-Gaussian features, then suitable nonlinear or non-Gaussian 
surrogate models can be easily incorporated (Chen & Majda, 2018; Edeling & Crommelin, 2020; Gershgorin 
et al., 2010; Khodkar & Hassanzadeh, 2018; Majda & Qi, 2018). In particular, one such simple candidate is a 
family of linear models with multiplicative noise (Averina & Artemiev, 1988). Another potential alternative is 
the multilayer stochastic models (Kondrashov et al., 2015, 2018). On the other hand, the sea ice dynamics within 
the scales studied here are predominantly nonlinear. The governing equations are well understood and are crucial 
in the dynamical interpolation, given that the directly observed variables are sea ice floe trajectories. The strong 
nonlinearity in sea ice dynamics is also more deterministic and less turbulent than the atmosphere or the ocean. 
Therefore, linear stochastic models are not appropriate for approximating the fully nonlinear behavior of sea ice. 

Figure 6. The recovered ocean flow field represented by the stream functions utilizing the dynamical interpolation. The 
top panel shows the truth and the recovered ocean field in the synthetic data experiment while the bottom panel shows the 
recovered ocean field of the real data. Since the primary focus is to resolve regions close to the ice edge, a 400 × 400 km 
domain within the original 600 × 600 km area and having the same domain center is presented. The pattern correlation 
between the true and recovered ocean in the 400 × 400 km subdomain is 0.32. The results shown here are on a specific day in 
the middle of the study period. For the real data, it is July 1. The error in recovering the ocean field remains in a similar level 
on other days. The white dots mark the locations of the floes. There are in total 17 floes inside the 400 × 400 km domain for 
both cases.
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Since the degree of freedom in characterizing the floe trajectories is much lower than the governing equations 
of the atmospheric and oceanic velocity fields, the nonlinear floe dynamics are explicitly incorporated into the 
dynamical interpolation framework.

It is also worth highlighting the importance of the prior physical model of the ocean and the prior time series of 
the atmosphere, which significantly facilitates the calibration of the linear stochastic models. In the absence of 
a suitable prior model or data for the ocean and the atmosphere, the calibration of the reduced-order stochastic 
surrogate models requires a more complicated iterative expectation-maximization procedure (Chen, 2020). In 
other words, the dynamical interpolation, the parameter estimation of the thickness, and the uncertainty quantifi-
cation of the oceanic and atmospheric flow fields have to be carried out simultaneously with the floe trajectories 
providing the only available information. Such an iterative approach often requires an extensive observational 
database to ensure the accuracy of the dynamical interpolation scheme.

Another crucial point is the quantification of the uncertainty, particularly in the presence of the model error, 
the small number of observations, and the implications of turbulent systems. Uncertainty quantification is not 
available by applying direct curve fitting methods but rather a unique feature of the dynamical interpolation frame-
work. In this study, the properties of sea ice exhibit various non-Gaussian features such as the non-symmetry in 
the distribution of the angular displacement, strong skewness, and fat tails with extreme events in the distributions 
of the curvature and thickness. These non-Gaussian features have been shown to be crucial in understanding the 
sea ice dynamics (Moon & Wettlaufer, 2017; Toppaladoddi & Wettlaufer, 2015). Hence, to assess uncertainty, the 
attributes of the entire distribution are considered.

Finally, the framework developed here has several unique implications for improving our understanding of Earth 
system science. First, new-generation climate models that accurately represent sea ice dynamics at the floe scale 
will require validation against Lagrangian observations of sea ice floes at high and moderate resolutions. The 
point-estimate recovery of missing observations and the associated estimates of the uncertainty mitigate some 
of the issues of Lagrangian optical remote sensing observations. The methodology presented here is also easily 
adaptable to analyze the output of other instruments. In this sense, it is expected that the continuous trajecto-
ries stemming from the nonlinear data assimilation can be used in more sophisticated deep-learning models for 
calibration and training. Second, the proposed framework allows for accurate parameter estimation of unob-
served variables at unprecedented scales in a Lagrangian setting. For example, the retrieval of sea ice thickness 
is outlined here, which is a crucial variable in understanding the evolution of the sea ice cover in response to a 
changing climate. Lastly, data assimilation provides the key missing piece for understanding ocean transport and 

Figure 7. Additional results for the real data experiment, similar to those in Panel (b) of Figure 5.
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mixing processes at high latitudes. Small-scale eddies have an important role in transferring energy to larger-scale 
structures via an inverse cascade of energy and are thus hypothesized to be the missing energy source to close 
the ocean energy budget. High-resolution numerical simulations have highlighted their contribution to nutrient 
redistribution, oxygen transport, and biogeochemical processes. However, they are hard to observe due to the 
lack of resolution of space-borne sensors and the sparsity of in situ instruments. Given the recently demonstrated 
connections between the rotation rate of sea ice floes and eddies with sub-surface expression in the western Arctic 
Ocean, it is anticipated that this method can be used to understand fundamental processes of ocean turbulence at 
small-to-moderate scales.

Appendix A: The Coupled Atmosphere-Ice-Ocean System
A1. The DEM Model

The sea ice floes are described using a DEM model. The floes can have arbitrary 2D shapes with their movements 
and rotations determined by the surface integrals of the ocean and wind velocities over these shapes. Both the full 
QG model and reanalysis data or and the approximate stochastic models can be used to drive this ice floe model. 
In the DEM model utilized here, the shape and thickness for each floe are assumed to be unchanging over time. 
Since the noninteracting floes are the primary focus of this work, the contact forces are not included in the model 
presented here, which greatly reduces the computational cost.

The dynamics of a single ice floe is described as follows (Chen et al., 2022; Manucharyan et al., 2022): Let 
Xice  =  (xice, yice) be the centroid of the floe and Ω be the angular displacement about the centroid. Also let 
Vice = (uice, vice) be the velocity of the floe and ω be the angular velocity. Then, ice floe-ocean interactions are 
calculated using surface integrals over the area of the floe:

�̇�𝐗ice = 𝐕𝐕ice (A1)

Ω̇ = 𝜔𝜔 (A2)

𝑚𝑚�̇�𝐕ice =
∬

𝐴𝐴

𝐅𝐅total d𝐴𝐴 (A3)

𝐼𝐼 𝐼𝐼𝐼 =
∬

𝐴𝐴

𝜏𝜏 d𝐴𝐴 (A4)

where A is the area of the floe. Ftotal is the total force on the ice floe induced by the ocean, atmosphere, and other 
sources. τ is the resulting torque, calculated from the force.

Figure 8. Comparison of the recovered properties using different interpolation methods. Panel (a): comparison of 
the distribution of the curvature of the recovered trajectories. Panel (b): comparison of the distribution of the angular 
displacement of the recovered trajectories. Panels (c)–(d): Schematic illustrations of the definitions of the discrete curvature 
and angular displacement used to compute the distributions in Panels (a)–(b).
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The total force on the floe by the ocean consists of ocean drag, atmosphere forcing, Coriolis force, and the pres-
sure gradient

𝐅𝐅total = 𝐅𝐅ocn + 𝐅𝐅atm + 𝐅𝐅Coriolis + 𝐅𝐅pressure. (A5)

To incorporate the ocean turning angle, define the rotation matrix Rθ as

�� =
⎛

⎜

⎜

⎝

cos(�) −sin(�)

sin(�) cos(�)

⎞

⎟

⎟

⎠

. (A6)

The force induced by the ocean drag at the point Xocn within A is given by

𝐅𝐅ocn = 𝜌𝜌ocn𝐶𝐶ocn‖𝑽𝑽 ocn − 𝑽𝑽 ice‖𝐑𝐑𝜃𝜃 (𝐕𝐕ocn − 𝐕𝐕ice) (A7)

where θ is the fixed ocean turning angle. Similarly, the force induced by the atmosphere at the point Xatm within 
A is given by

𝐅𝐅atm = 𝜌𝜌atm𝐶𝐶atm‖𝑽𝑽 atm − 𝑽𝑽 ice‖ (𝐕𝐕atm − 𝐕𝐕ice) . (A8)

No atmosphere turning angle was used in this study. The Coriolis force induced on the floe is constant over the 
area of the of the floe and is given by

𝐅𝐅Coriolis = 𝜌𝜌ice𝑓𝑓𝑐𝑐𝐿𝐿ice𝐑𝐑−𝜋𝜋∕2𝐕𝐕ice (A9)

where fc is the Coriolis coefficient and Lice is the thickness of the ice floe. The force induced by the pressure 
gradient of the ocean acting on the floe depends on the ocean velocity and so varies over the floe area, A

𝐅𝐅pressure = 𝜌𝜌ice𝑓𝑓𝑐𝑐𝐿𝐿ice𝐑𝐑𝜋𝜋∕2𝐕𝐕ocn. (A10)

The pressure gradient of the ocean is in geostrophic balance with the Coriolis force induced on the ocean. The 
torque induced on the floe at the grid point Xtorque is given by

𝜏𝜏 =
(
𝐗𝐗torque − 𝐗𝐗ice

)
× 𝐅𝐅total =

(
𝑥𝑥torque − 𝑥𝑥ice

)
𝐹𝐹𝑦𝑦 −

(
𝑦𝑦torque − 𝑦𝑦ice

)
𝐹𝐹𝑥𝑥 (A11)

where Ftotal = (Fx, Fy) are the components of the total force.

A2. The Two-Layer QG Model

The ocean model is a two-layer QG model with periodic boundary conditions on a square domain. The ocean 
state is characterized by the stream functions ψi(x, y) and potential vorticities (PV) qi(x, y) of each layer i = 1, 2. 
These quantities, ψ and q, are deviations from a background mean state. The level curves of the stream function, 
ψi, correspond to streamlines of the velocity field, which guarantees an incompressible flow. The ocean velocity 
field for each layer can thus be calculated as

(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) =

(

−
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
,
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕

)

, 𝑖𝑖 = 1, 2. (A12)

The formulation of the QG equations follows the version in Arbic and Flierl (2004). The PDEs that govern the 
time evolution of ψi and qi are as follows:

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
+ 𝑢𝑢1

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
+ 𝐽𝐽 (𝜕𝜕1, 𝜕𝜕1) = ssd (A13)

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
+ 𝑢𝑢2

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
+ 𝐽𝐽 (𝜕𝜕2, 𝜕𝜕2) = −𝑅𝑅2∇

2
𝜕𝜕2 + ssd. (A14)

Here “ssd” represents small-scale dissipation, which are higher-order derivative terms that are ignored. J is the 
Jacobian
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𝐽𝐽 (𝜓𝜓𝜓 𝜓𝜓) =
𝜕𝜕𝜓𝜓

𝜕𝜕𝜕𝜕

𝜕𝜕𝜓𝜓

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜓𝜓

𝜕𝜕𝜕𝜕

𝜕𝜕𝜓𝜓

𝜕𝜕𝜕𝜕
. (A15)

The stream functions further satisfy

𝑞𝑞1 = ∇2
𝜓𝜓1 +

(𝜓𝜓2 − 𝜓𝜓1)

(1 + 𝛿𝛿)𝐿𝐿2
𝑑𝑑

𝑞𝑞2 = ∇2
𝜓𝜓2 +

𝛿𝛿 (𝜓𝜓1 − 𝜓𝜓2)

(1 + 𝛿𝛿)𝐿𝐿2
𝑑𝑑

. (A16)

where δ = H1/H2, Hi is the depth of each layer, and Ld is the deformation radius.

𝐴𝐴 𝑢𝑢1 and 𝐴𝐴 𝑢𝑢2 are the mean ocean velocities for each layer. 𝐴𝐴 𝐴𝐴𝑞𝑞1∕𝐴𝐴𝜕𝜕 and 𝐴𝐴 𝐴𝐴𝑞𝑞2∕𝐴𝐴𝜕𝜕 are the mean of the PV gradients for 
each layer and are given explicitly by

𝜕𝜕𝑞𝑞1

𝜕𝜕𝜕𝜕
=

𝑢𝑢1 − 𝑢𝑢2

(1 + 𝛿𝛿)𝐿𝐿2
𝑑𝑑

𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕
=

𝛿𝛿
(
𝑢𝑢2 − 𝑢𝑢1

)

(1 + 𝛿𝛿)𝐿𝐿2
𝑑𝑑

. (A17)

The final parameter, R2, is the decay rate of the barotropic mode

𝑅𝑅2 =

𝑓𝑓0𝑑𝑑Ekman

2𝐻𝐻2

 (A18)

where f0 is the Coriolis parameter and dEkman is the bottom boundary layer thickness. Note that in this formulation, 
we use a constant Coriolis force throughout the domain.

Table A1 summarizes the parameters in the DEM and two-layer QG models.

Parameter Value

Ocean density ρocn = 1027 kg/m 3

Ice density ρice = 920 kg/m 3

Air density ρatm = 1.2 kg/m 3

Ocean drag coefficient cocn = 5.5 × 10 −3

Atmosphere drag coefficient catm = 1.6 × 10 −3

Coriolis coefficient fc = 1.4 × 10 −4

Top layer mean ocean velocity 𝐴𝐴 𝑢𝑢1 = 2.58  km/day

Bottom layer mean ocean velocity 𝐴𝐴 𝑢𝑢2 = 1.032  km/day

Top layer mean potential vorticity 𝐴𝐴
𝜕𝜕𝑞𝑞

1

𝜕𝜕𝜕𝜕
= 0.0265  km −1 day −1

Bottom layer mean potential vorticity 𝐴𝐴
𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕
= −0.0212  km −1 day −1

Coriolis parameter fc = 12 days −1

Coupling parameter R1 = 6.9 × 10 −5 km −1

Decay rate of the barotropic mode R2 = 1 day −1

Deformation radius Ld = 5.7 km

Ratio of upper-to lower-layer depth δ = 0.8

Turning angle of the ocean θ = π/9

Ensemble size 600

Localization radius 200 km

Observational noise in location 250 m

Observational noise in angular displacement 5°

Table A1 
Parameters in the Discrete Element Method, the Two-Layer QG Models and the Ensemble Kalman Smoother
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A3. The Atmospheric Wind Velocity Data

The fifth generation ECMWF reanalysis data product (ERA5) (Copernicus Climate Change Service (C35), 2017; 
Olauson, 2018) for the global climate and weather is implemented for describing the atmospheric wind that is 
used to calibrate the atmospheric component of the linear stochastic models.

Appendix B: Sea Ice Floe Observations and the Processing of Satellite Images
Remote sensing measurements were retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) 
optical imagery (Level 1B 250 M). The data are open-access through the Earth Observing System Data and 
Information System (EOSDIS) Worldview platform (https://worldview.earthdata.nasa.gov). In summary, both 
Corrected Reflectance True and False Color images were preprocessed to reduce the imprint of atmospheric 
noise, allowing the segmentation of sea ice floes ranging from 4 to 75 km in the length scale as individual objects. 
Ice floes were then tracked in a three-stage process involving comparing geometrical parameters in successive 
images, finding potential matches, and selecting the best candidates based on the assessment of a similarity 
metric and surface area differences. The reader is referred to Lopez-Acosta et al. (2019) for a detailed description 
of the preprocessing, segmentation, and tracking routines.

Appendix C: Calibration of Stochastic Forecast Models
Statistically accurate stochastic models are used for the ocean and atmospheric components of the forecast model. 
These models can be systematically calibrated based on a 20-year simulation of the two-layer QG model in the 
case of the ocean component and reanalysis data set in the case of the atmospheric component. In both cases, 
the system state is represented in spectral space and the evolution of each spectral mode is governed by a linear 
stochastic model (Equation 1). Only the modes with a wave number less than a certain radius are kept: |k| ≤ 11 
in the case of the ocean and |k| ≤ 5 in the case of the atmosphere for a total of 337 and 81 modes, respectively.

Recall the linear stochastic model in Equation 1, which is also known as the complex Ornstein-Uhlenbeck (OU) 
process (Gardiner, 2009). In Equation 1, a, ω, and σ are real-valued parameters with a, σ > 0, f is a complex-valued 
parameter, and 𝐴𝐴 �̇�𝑊  is a complex-valued white noise. The equilibrium distribution of this OU process is Gaussian 
and its mean and variance are given in terms of the model parameters:

�̄�𝑢 =
𝑓𝑓

𝑎𝑎 − 𝑖𝑖𝑖𝑖
Var(𝑢𝑢) =

𝜎𝜎
2

2𝑎𝑎
. (C1)

The decorrelation time is defined as

𝑇𝑇 =
∫

∞

0

𝔼𝔼
[(
𝑢𝑢(𝑡𝑡) − 𝑢𝑢

) (
𝑢𝑢(𝑡𝑡 + 𝜏𝜏) − 𝑢𝑢

)∗]

Var(𝑢𝑢)
𝑑𝑑𝜏𝜏 (C2)

where the expectation is taken over t. The decorrelation time is also given in terms of the model parameters

𝑇𝑇 =
1

𝑎𝑎 − 𝑖𝑖𝑖𝑖
. (C3)

Using these equation for the equilibrium mean, variance, and decorrelation time, the four parameters of the OU 
process, d, ω, f, and σ, can be written explicitly in terms of these equilibrium statistics as in

𝑑𝑑 = Re

[
1

𝑇𝑇

]

𝜔𝜔 = −Im

[
1

𝑇𝑇

]

𝑓𝑓 =
�̄�𝑢

𝑇𝑇
𝜎𝜎 =

√

2Var(𝑢𝑢)Re

[
1

𝑇𝑇

]

. (C4)

Using these formulae for the model parameters, an OU process can be fit to match a given set of equilibrium 
statistics. In the case of the ocean model, an independent OU process is fit to each spectral mode of the stream 
function using the mean, variance, and decorrelation time of a 20-year QG model simulation. For the atmosphere 
model, a pair of independent OU processes is fit to each spectral mode of the two-dimensional velocity field using 
the statistics of the velocity field from the ERA5 data set.
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Appendix D: Ensemble Update
Let K denote the number of days of observations and denote the time of each day of observations by tk for k = 1, 
…, K. Denote the M-dimensional system state at time t by ψ(t) for t1 ≤  t ≤  tK. Then define the vector dk of 
observed floe locations and orientations at time tk by

𝒅𝒅𝑘𝑘 = 𝑘𝑘 [𝝍𝝍 (𝑡𝑡𝑘𝑘)] + 𝝐𝝐. (D1)

𝐴𝐴 𝑘𝑘 returns only the subset of system variables corresponding to the observed floe positions and orientations at 
time tk. The dependence on k allows for a changing number of observed floes at each observation time. ϵ is a small 
Gaussian observational noise, corresponding to the resolution of the satellite images.

The EnKS, and all smoothing algorithms, estimates

𝑓𝑓 (𝝍𝝍(𝑡𝑡)|𝒅𝒅𝑘𝑘,… ,𝒅𝒅0) , (D2)

the probability distribution of the state variable ψ(t) at a time t0 < t < tk given the available observations d0, …, 
dk. The estimation of the variable at any time t in the interval (t0, tk) contrasts smoothing with filtering, which 
only estimates the state at the present time tk. This distribution at time tk can be calculated exactly using Bayes' 
theorem,

� (� (��) |�0,… ,��) ∝ � (� (��) |�0,… ,��−1) � (��|� (��)) , (D3)

a process called Bayesian inference. The left-hand side of equation (D3) is the posterior distribution while the 
right-hand side consists of two factors: the prior or forecast distribution and the observational model. The EnKS 
represents the distribution of the state variable with an ensemble of model trajectories. This ensemble is then iter-
atively forecast and updated for each set of observations, which is processed sequentially in time, using equation 
(D3). Note that the difference between the ensemble Kalman filter (EnKF) and EnKS is that the former only uses 
the information up to the current time instant while the latter uses all the available observational information, 
including the future one. Thus, the EnKF is more appropriate for the providing an improved initialization of the 
forecast while the EnKS applies to dynamical interpolation.

Let N be the size of the ensemble and denote individual ensemble members by 𝐴𝐴 𝝍𝝍
(𝑛𝑛)

𝑘𝑘
(𝑡𝑡) for n = 1, …, N. The 

superscript “(n)” distinguishes individual ensemble members from the true system state denoted by ψ(t). 
The subscript k denotes that the ensemble has been updated using the first k observations. To compute 𝐴𝐴 𝝍𝝍

(𝑖𝑖)

𝑘𝑘
(𝑡𝑡) 

for t > tk, the forecast model is used. While only the value of 𝐴𝐴 𝝍𝝍
(𝑖𝑖)

𝑘𝑘
(𝑡𝑡𝑘𝑘+1) is required to perform the ensemble 

update, the ensemble at any prior time t for t1 ≤ t ≤ tk+1 can be stored in memory and updated for each new 
observation.

Once the ensemble has been updated for observation k, to assimilate observation k + 1, the M × N matrix of the 
ensemble members is formed

��(�) =
(

� (1)
� (�) � (2)

� (�) ⋯ � (�)
� (�)

)

. (D4)

The forecast ensemble matrix, 𝐴𝐴 𝑨𝑨
f

𝑘𝑘+1
= 𝑨𝑨𝑘𝑘 (𝑡𝑡𝑘𝑘+1) , is calculated using the forecast model. Then the updated ensem-

ble is calculated using an N × N linear transformation, T, of the ensemble

𝑨𝑨𝑘𝑘+1(𝑡𝑡) = 𝑨𝑨𝑘𝑘(𝑡𝑡)𝑻𝑻 (D5)

for any t1 ≤ t ≤ tk+1 where T is formed using the Kalman filter equations from the forecast ensemble, 𝐴𝐴 𝑨𝑨
f

𝑘𝑘+1
 , and 

the observations, dk+1.

The above method is modified slightly to utilize localization, which leverages the spatial structure of the 
system to reduce the negative effects of spurious correlations. During the update at time tk, each variable in 
ψ is associated with a location in physical space. For variables of an observed floe, their assigned location 
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is the position of the observation. For an unobserved floe, the forecast mean position is used. For ocean and 
atmosphere variables, the spectral representations are transformed to physical space and the location for each 
grid point is used.

To update under localization, each state variable in ψ is updated individually. An ensemble corresponding to each 
state variable is formed from taking the values from the ensemble of model trajectories. This ensemble is then 
updated using only observations that are within a fixed radius of that variable's associated spatial location. The 
matrix T is formed using the full forecast ensemble, 𝐴𝐴 𝑨𝑨

f
𝑘𝑘
 , and the observation vector dk containing only the obser-

vations within the localization radius. Then the 1 × M row vector of the variable's ensemble is updated using this 
localized version of T. This process is repeated to update all localized variables in ψ.

Appendix E: Parameter Estimation
Unknown parameters, such as individual floe thicknesses, can be estimated within the proposed framework. The 
parameters are appended to the state vector and treated as nondynamical variables. In other words, the evolu-
tion equations of the parameters θ are dθ/dt = 0. The initial values of the parameters in each ensemble member 
are drawn from a background distribution (displayed in panel (c) of Figure 4). Therefore, the initial ensemble 
includes the uncertainty of the parameters. During the ensemble forecast, the parameter values are kept constant. 
However, during the ensemble update, the distribution of parameter values among the ensemble members is 
updated as well according to the same linear transformation. In this way, the distribution of parameter values 
changes over the course of the algorithm even though the values do not change during the forecast. Since the 
parameters are nondynamical, trajectories of these parameters do not need to be considered and only the current 
values of the parameters need to be stored.

Appendix F: Sensitivity Analysis of the Ocean Recovery
The ocean is represented in the system state by the stream function, which encodes an incompressible flow. The 
synthetic data was generated using a QG incompressible ocean model. For nonlinear data assimilation, a statisti-
cally accurate stochastic forecast model is used to forecast the ensemble of model trajectories. This ensemble is 
then updated after each set of observations, allowing any model variables, including the ocean stream function, 
to be recovered at any point in time. For these experiments, the ocean is recovered for the day of July 1, which 
is roughly in the middle of the set of observations. Note that the ocean evolves slowly with time, and so, this is 
representative of the overall ocean recovery. In addition to the standard setup in the main text, the following two 
additional experiments of the ocean flow field recovery are included.

Figure F1 shows the recovery of the ocean stream function using synthetic data without atmosphere forcing, 
that is, the atmospheric component of the sea ice model is removed for both the generation of synthetic data 
and the forecast model. In this case, the dynamics of the floes are fully accounted for by ocean forces and the 
total degree of freedom of the unobserved variables is reduced. Therefore, a better recovery of the ocean state 
is expected due to the lack of interference from the atmosphere. Indeed, the results of the ocean recovery seem 
to be improved. However, the lack of atmosphere forcing, which is responsible for the large-scale floe move-
ments, leads to floe trajectories that travel a shorter distance and hence cover a smaller portion of the region. 
This impacts localization during the ocean ensemble update, which removes the influence of observed floes that 
fall outside the localization radius of each ocean grid point. In this case, the amplitude of the recovered ocean 
is nearly zero in some areas, which reflects the uncertainty of the ensemble rather than an actual amplitude of 
individual ensemble members.

In another experiment, Figure F2 shows the ocean recovery for synthetic data that is generated with atmospheric 
forcing but using a 200 km by 200 km ocean (rather than a 600 km by 600 km ocean) that is extended periodically 
to the entire domain. This is analogous to a case in which a much higher density of observations is available. No 
localization is utilized here, as the typical localization radius of 200 km covers the entire ocean. In this case, the 
qualitative recovery of the ocean is quite good, demonstrating that a sufficiently high density of floe observations 
can recover ocean features well.

 19422466, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003218, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

COVINGTON ET AL.

10.1029/2022MS003218

20 of 23

Figure F1. A comparison of the true and recovered ocean on July 1 for a synthetic data experiment with no atmosphere 
forcing. Panel (a) shows the stream function of the true ocean generated from a QG ocean model. Panel (b) shows the 
recovery of the stream function using the ensemble mean. The pattern correlation between the true and recovered ocean in the 
400 × 400 km subdomain is 0.43. Each plot shows white dots indicating the position of the observed floes. While a 400 km 
by 400 km region is plotted, the ocean is extends another 100 km on all sides to reduce the impact of the periodicity in the 
ocean model.

Figure F2. A comparison of the true and recovered ocean stream functions for a synthetic data experiment using a 200 km 
by 200 km ocean extended periodically to the whole domain. Panel (a) shows the true ocean, generated from a QG model on 
a 200 km by 200 km domain. The dashed black line indicates the size of the ocean, which is then periodically extended to the 
whole domain. Panel (b) shows the ensemble mean stream function. The pattern correlation between the true and recovered 
ocean is 0.60. The floe positions are indicated with white dots. Note that observations outside of the 200 km by 200 km ocean 
region influence the ensemble update of the ocean just as much as observations inside the region due to the periodicity of the 
ocean.
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Appendix G: Behavior of Ensemble Members in the Dynamical Interpolation
The ensemble mean provides a complete trajectory and is the best point estimate of a floe's position available 
from the dynamical interpolation method. However, despite the fact that each ensemble member is based on the 
model forecast corrected by the partial observations, their average—the ensemble mean—is often not a physically 
consistent trajectory of the model. Therefore, it is important to look at each individual ensemble member and 
understand the additional physical properties that are not fully reflected in the ensemble mean.

Figure G1 shows an example of a continuous floe trajectory generated from the sea ice model, along with the 
daily observed floe positions. The trajectories between daily observations are then interpolated using different 
methods. Note that this floe trajectory contains a loop midway through, which is compared qualitatively with the 
interpolation using different methods. While the ensemble mean provides better physics than linear interpolation 
and contains nonlinear evolution of the trajectory, it still fails to capture this loop. On the other hand, more than 
half of the ensemble members recover such a loop around the correct location, something which is otherwise lost 
during averaging. The finding here reveals the potential role that utilizing individual ensemble members can play 
in identifying properties of floe trajectories that are not otherwise captured by the ensemble mean. Such a result 
also highlights the importance of considering the uncertainty represented by the ensemble members in addition 
to the mean state estimation.

Figure G1. Comparison of different methods for the interpolation of floe trajectories. The first panel shows a floe trajectory 
generated from the sea ice model and sampled every time unit at the black dots. This trajectory contains a loop. The next 
three panels show various forms of interpolation. The first shows linear interpolation. The second shows the ensemble mean. 
The third shows a sampled ensemble member. The bottom panels show other sampled ensemble members.
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Data Availability Statement
A library of floe observations (Lopez-Acosta & Wilhelmus, 2021) was used for the real data set experiments 
and to initialize the synthetic data experiments (https://doi.org/10.5281/zenodo.4796844). The ERA5 reanalysis 
data set (Copernicus Climate Change Service (C35), 2017) was used to calibrate the wind model and gener-
ate the synthetic data (https://doi.org/10.24381/cds.adbb2d47). The code used to process the data and create 
the figures was written in MATLAB. The code and output data of the experiments are available on Zenodo 
(https://doi.org/10.5281/zenodo.7026025).
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