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A B S T R A C T   

Proliferation of microplastics in rivers, lakes, estuaries, coastal waters and oceans is a major global challenge and 
threat to the environment, livelihoods and human health. Reliable predictive tools can play an essential role in 
developing an improved understanding of microplastics behaviour, exposure and risk in water bodies, and 
facilitate identification of sources and accumulation hot spots, thereby enabling informed decision-making for 
targeted prevention and clean-up activities. This study presents a new numerical framework (CaMPSim-3D) for 
predicting microplastics fate and transport in different aquatic settings, which consists of a Lagrangian, three- 
dimensional (3D) particle-tracking model (PTM) coupled with an Eulerian-based hydrodynamic modeling sys-
tem (TELEMAC). The 3D PTM has several innovative features that enable accurate simulation and efficient 
coupling with TELEMAC, which utilizes an unstructured computational mesh. The PTM is capable of considering 
spatio-temporally varying diffusivity, and uses an innovative algorithm to locate particles within the Eulerian 
mesh. Model accuracy associated with different advection schemes was verified by comparing numerical pre-
dictions to known analytical solutions for several test cases. The implications of choosing different advection 
schemes for modeling microplastics transport was then investigated by applying the PTM to simulate particle 
transport in the lower Saint John River Estuary in eastern Canada. The sensitivity of the PTM predictions to the 
advection scheme was investigated using six numerical schemes with different levels of complexity. Predicted 
particle distributions and residence times based on the fourth-order Runge–Kutta (RK4) scheme differed 
significantly (residence times by up to 100 %) from those computed using the traditional first-order (Euler) 
method. The Third Order Total Variation Diminishing (TVD3) Runge-Kutta method was found to be optimal, 
providing the closest results to RK4 with approximately 27 % lower computational cost.   

1. Introduction 

Microplastics and their impacts on the aquatic environment and 
human life have received significant attention from governments, water 
resources managers, environmental regulators and the general public 
over the last decade (Hüffer et al., 2017a). Microplastics are generally 
defined as any plastic particles with characteristic length scales <5 mm 
(Andrady, 2011; Cole et al., 2011; Costa et al., 2011; Lee et al., 2013; 
Besseling et al., 2017; Wright et al., 2018). These particles are small 
enough to be ingested by aquatic organisms and subsequently proceed 
along the marine food web to the human body. Moreover, due to their 
large surface area-to-volume ratio and high mobility, microplastics have 
high potential for absorbing and dispersing different types of contami-
nants, organic matter, and invasive species (Rios et al., 2007; Betts, 

2008; Ashton et al., 2010; Koelmans et al., 2013; Lo et al., 2018; Caruso, 
2019). Microplastics derive from different compounds, characterized by 
different densities. Nine of the main polymer types found in marine 
environments, and their densities, are listed in Table 1 (Andrady, 2011). 
Microplastics can also be classified based on particle shapes or geome-
tries, which can include spheres, granules, films, and fibres (Van Mel-
kebeke et al., 2020). 

Understanding fate and transport of microplastics in water is a key 
focus area for research (Hardesty et al., 2017; Hüffer et al., 2017b). As a 
mass-transport problem in a fluid medium, the movement and trans-
formation of microplastics in water can be described by the advection- 
diffusion-reaction (Eq. 1), 

∂S
∂t

= ∇ • (SU)+∇ • (K∇SU)+ ρ(S) (1) 
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where S is the concentration, K is the diffusion coefficient, U is the ve-
locity of the ambient environment, t is the time and ρ(S) is the reaction 
function. Diffusion is the process whereby particles spread due to mo-
lecular (Brownian) motion and turbulence. Dispersion, spreading asso-
ciated with the combined effects of velocity gradients and diffusion, is 
often approximated as a diffusive process. 

Computer models that can provide reliable predictions of the 
movement and behaviour of microplastic particles in water are poten-
tially valuable tools for identifying accumulation hot spots, pathways 
and potential sources, and ultimately guiding clean-up/recovery activ-
ities. Predictive models can also help to promote awareness and support 
education, decision-making, and policy development surrounding pre-
vention, mitigation and remediation activities. Lagrangian models, also 
known as particle-tracking models (PTMs), are a class of numerical 
models that can be used to predict the movement of discrete particles or 
objects in various media, such as air or water. At each time step, the 
position and motion of particles is determined by solving governing 
transport equations in a reference frame that moves with the particles. 
Particles can either be considered as passive objects that follow the 
ambient flow field (i.e., kinematic approach), or their movement can be 
determined based on the balance of forces (e.g., gravity, friction, drag, 
inertia) and interactions between the particles and the medium in which 
they reside (i.e., dynamic approach). In the dynamic approach, particles 
are driven by the resultant applicable external/internal forces on them, 
based on the equation of motion. 

At each time step of simulation with PTMs, transport equations are 
only solved for the active (e.g. in motion) particles in the domain. 
Whereas, in Eulerian models the governing equations are solved for all 
of the computational cells during simulation. For a similar total number 
of particles and computational nodes, Hunter (1987) showed that 
particle-tracking technique is significantly more efficient than conven-
tional finite-difference methods in higher-dimension cases, or when the 
particles patch occupies only a portion of the whole model domain 
(heterogeneously-distributed). PTMs normally have higher computa-
tional stability than explicit Eulerian models permitting them to use 
larger time steps while maintaining accuracy (Staniforth and Cote, 
1991; Neuman, 1984). They also allow for accurate simulation of non- 
diffusive transport in high Peclet-number (advection-dominated) 
flows. This feature is of particular importance in the cases where the 
gradient of concentration is steep (Neuman, 1984; Hunter, 1987; 
Szymczak and Ladd, 2003). PTMs are also more compatible with the 
nature of parallel computation parallel computation which can signifi-
cantly enhance the computational speed (Dimou and Adams, 1993). 
PTMs can be conveniently used for analysing integral parameters such as 
residence time and ages of the particles, which are linked to the trans-
formation processes such as weathering and degradation, and influence 
microplastics transport in aquatic systems. Contamination sources in 
PTMs are represented by releasing particles at source locations, and 
concentrations are calculated based on the number of particles occu-
pying a defined volume at a given time. 

Typically, PTMs for simulating pollutant transport in water bodies 
rely on hydrodynamic inputs (e.g., water levels, velocities, turbulence) 

from Eulerian models, such as ocean general circulation models 
(OGCM's) (Potemra, 2012; van Sebille et al., 2018) or other hydrody-
namic models (Jalón-Rojas et al., 2019). PTMs relying on Eulerian 
model inputs are therefore often referred to as hybrid Eulerian- 
Lagrangian models (Oliveira and Baptista, 1995; Xue et al., 2018). 
Several Eulerian-Lagrangian numerical tools have been developed for 
predicting fate and transport of macro-plastics (Mansui et al., 2015; 
Liubartsevaa et al., 2018; Mansui et al., 2020), oil (North et al., 2011; 
Goeury et al., 2014; Spaulding, 2017), debris (Bladé and Sánchez-Juny, 
2016; Ruiz-Villanueva et al., 2014; Potemra, 2012; Politikos et al., 
2017), surface drifters (Kjellsson and Döös, 2012), plankton (Xue et al., 
2018), and sediment (Kelsey, 1994) in water systems. Recently, a 
growing awareness of the potential impacts of microplastics has moti-
vated research and development of models aimed at providing realistic 
predictions of the behaviour of microplastics in water. Isobe et al. 
(2014), Iwasakia et al. (2017), Jalón-Rojas et al. (2019), Alosairi et al. 
(2020), Daily et al. (2020), Soto-Navarro et al. (2020), Mansui et al. 
(2020), and Mountford and Morales Maqueda (2021) are examples of 
previous studies where Lagrangian models were used for predicting 
microplastic debris fate and transport. Hardesty et al. (2017) provides an 
overview on the application of numerical modeling for simulating fate 
and transport of microplastics in the marine environment. Isobe et al. 
(2014) used a vertical two-dimensional (2D) PTM to investigate trans-
port of mesoplastics and microplastics in the near-shore zone of Seto 
Inland Sea, Japan. Their model was not couple with an Eulerian model 
for hydrodynamic information, and only accounted for waves (Stocks 
drift), friction, and buoyancy force for the transport process, which is 
not realistic (Li et al., 2020). Also, the Isobe et al. (2014) model was 2D 
vertical and did not allow simulating cross-shore transport of the par-
ticles, thus could not capture particles distribution along the shoreline. 
In a recent Eulerian-Lagrangian modeling study, Mansui et al. (2020) 
simulated transport of macro (>2 cm) plastic particles near the surface 
of the Mediterranean Sea using a Lagrangian (PTM) model called 
ARIANE (Blanke and Raynaud, 1997). The PTM used the surface current 
velocity field from an oceanic general circulation model (OGCM) to 
calculate the advection process. Mansui et al.'s model was 2D horizontal 
(depth-averaged) and forced the particles to remain within 50 cm of the 
water surface. However, the authors highlighted the need to consider 
the vertical movement of particles in future model development. Macías 
et al. (2019) used an Eulerian-Lagrangian model that coupled a General 
Estuarine Transport Model (GETM) (Burchard and Bolding, 2002) with a 
PTM (Ichthyop v.3.3) (Leet et al., 2008) to investigate seasonal changes 
in accumulation patterns of floating litter at the surface of the Medi-
terranean Sea. The model was 2D horizontal and therefore did not 
simulate vertical movement of particles within the water column. Soto- 
Navarro et al. (2020) overcame this limitation by coupling a 3D Ich-
thyop v.3.3 model with a high resolution circulation model (RCM), 
which provided 3D current velocity fields in the Mediterranean Sea. 
However, the model did not consider the impact of vertical diffusivity on 
particle movement within the water column. In another recent 3D 
modeling study Jalón-Rojas et al. (2019) developed a three-dimensional 
PTM, called TrackMPD, to simulate behaviour of microplastic particles 
in water. The Jalón-Rojas et al. (2019) model improved on previous 
models in that it includes the capability to incorporate the impact of 
both particles settling and vertical current to simulate movement of 
particles within the water column. TrackMPD can be coupled with 
different OGCMs. The 3D PTMs in Jalón-Rojas et al. (2019) and Soto- 
Navarro et al. (2020) relied on hydrodynamic input from rectangular 
(structured) grids only, a limitation for coastal, estuarine, and riverine 
applications where unstructured grids can provide higher resolution in 
bays and regions of complex geometry. This means that the models 
cannot be coupled with hydrodynamic models utilizing the unstructured 
computational meshes that are needed to adequately resolve hydrody-
namics and particulate transport in coastal and inland waters which are 
characterized by complex morphologies and a variety of relevant spatio- 
temporal scales. Since human population and activities are concentrated 

Table 1 
Densities of microplastic particles commonly found in the environment 
(adapted from Andrady, 2011).  

Type Density (kg/m3) 

Polyethylene (PE) 910–950 
Polypropylene (PP) 900–920 
Polystyrene (expanded) 1–1050 
Polystyrene (PS) 1040–1090 
Poly vinyl chloride (PVC) 1160–1300 
Polyamide (PA) or nylon 1130–1150 
Polyethylene terephthalate (PET) 1340–1390 
Polyester resin + glass fibre >1350 
Cellulose acetate 1220–1240  
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in and around coastal and inland waters, this is a limiting factor affecting 
the application of models to better understand human exposure to 
microplastics and associated impacts. Daily et al. (2020) coupled a 
three-dimensional PTM model with the Finite Volume Community 
Ocean Model (FVCOM) to investigate behaviour of different types of 
microplastics in Lake Erie. FVCOM has the capability to provide hy-
drodynamic information on an unstructured grid. However, the PTM 
required hydrodynamic output on a regular grid, requiring FVCOM 
outputs to be interpolated to a rectangular grid at each time step of the 
simulation, with implications for model accuracy and efficiency. 

Simulating the fate and transport of microplastics in water is com-
plex, owing in part to the fundamental complexities associated with 
driving physical processes in different aquatic environments. Zhang 
(2017) and Onink et al. (2019) describe the processes contributing to the 
transport of microplastic particles in coastal waters and oceans, 
respectively. The fate and transport of microplastics in water is also 
influenced by the physical properties of particles, particularly their 
density, size and shape (Khatmullina and Chubarenko, 2019). These 
properties may change over time in response to degradation (mechani-
cal/chemical), growth of biofilm (Chubarenko et al., 2016; Rummel 
et al., 2017), coagulation (Long et al., 2015; Nizzetto et al., 2016), or 
fragmentation (ter Halle et al., 2016; Kaandorp et al., 2020) processes. 
The influence of these and other processes on the behaviour of plastic 
debris in the aquatic environment has been investigated in number of 
previous studies (Barnes et al., 2009; Quik et al., 2014; Chubarenko 
et al., 2016; ter Halle et al., 2016; Kaiser et al., 2017; Kooi et al., 2017; 
Michels et al., 2018; Hoellein et al., 2019; Li et al., 2019; Waldschläger 
and Schüttrumpf, 2019). Once microplastics are introduced into a water 
body, they move and disperse within the system in response to circu-
lation patterns and diffusion processes. However, a certain fraction of 
the total microplastic particle load to the system may be trapped 
temporarily or permanently in stagnant regions (Monsen et al., 2002). 
The longer microplastic (polymer) particles are retained in a system, the 
more likely they are to be impacted by transformation processes such as 
weathering and degradation, release toxic ingredients (leaching), or 
absorb other ambient contaminants on their surface (Chamas et al., 
2020; Zhang et al., 2021). 

Recent advances in modeling the fate and transport of microplastics 
have mainly focused on implementing physical processes such as 
transport by Ekman and geostrophic currents (Onink et al., 2019), 
Stokes drift (Iwasakia et al., 2017), beaching and sedimentation (Liu-
bartsevaa et al., 2018), buoyancy (Daily et al., 2020), and investigating 
the relative importance of various processes through sensitivity ana-
lyses. However, the performance of these models in simulating advec-
tion and dispersion of microplastic particles has never been thoroughly 
verified, which could be partly attributable to the lack of available 
measurements (laboratory or field). Previous modeling studies focussed 
on microplastics fate and transport have given limited attention to 
selecting appropriate numerical methods, which influence both 
computational efficiency and accuracy (e.g. Iwasakia et al., 2017; Alo-
sairi et al., 2020; Daily et al., 2020). Optimizing computational effi-
ciency and accuracy is particularly important for microplastics 
modeling, which require long simulations to characterize residence 
times, and capture gradual transformation processes over long time 
scales (e.g. degradation, biofouling). Compromising accuracy for 
computational efficiency can lead to accumulation of errors over time 
and degrade the utility of models as investigative and decision-support 
tools. 

In this paper, the Canadian microplastic simulation (CaMPSim) 
system is presented as a novel and efficient numerical framework for 
predicting fate and transport of microplastics in rivers, lakes, estuaries, 
coastal waters and oceans, and is verified. The tool is based on a three- 
dimensional (3D) PTM model coupled with the TELEMAC hydrody-
namic modeling system (Hervouet, 2007; Moulinec et al., 2011). The 
PTM incorporates innovative features that offer several advantages over 
existing models with respect to computational methodology and 

modeling transport in aquatic environments with complex hydrody-
namics. The Eulerian-Lagrangian model is based on an unstructured 
Eulerian mesh, considers both spatially and temporally varying diffu-
sivity in the Lagrangian particle-tracking scheme, and uses an innova-
tive method for locating particles (“point location”) within the 
unstructured mesh. To the best of the authors' knowledge, these features 
have not previously been incorporated in PTMs for simulating fate and 
transport of microplastics. Verification of the PTM involved testing the 
accuracy of different advection schemes by comparing model pre-
dictions to known analytical solutions for idealized test cases. The po-
tential real-world implications of selecting advection schemes with 
varying levels of accuracy and computational efficiency were explored 
using a previously calibrated and validated TELEMAC, three- 
dimensional hydrodynamic model of the lower Saint John River estu-
ary in eastern Canada (Vouk et al., 2019). 

2. Methodology 

This section describes the methodology employed in CaMPSim-3D 
for modeling fate and transport of microplastics in water. The move-
ment of microplastic particles in water is driven primarily by dynamic 
fluid and buoyancy forces due to ambient environmental conditions, and 
the physical characteristics (e.g., shape, size, density) of the particles. 
The physical characteristics of microplastics change over time in 
response to a variety of processes (transformation) that are, in turn, 
affected by ambient environment parameters (e.g., salinity, tempera-
ture, algae concentration, UV index). CaMPSim-3D has two main com-
ponents: a Lagrangian component (i.e., PTM), which simulates particle 
advection, dispersion, buoyancy effect, transformation processes 
(biofouling, degradation), beaching and washing off, and an Eulerian 
component that provides the required information on ambient envi-
ronment conditions for input to the PTM (e.g. water levels, velocities, 
turbulent viscosity, salinity, temperature, water density). The Eulerian 
model provides information on an unstructured (triangular) mesh. The 
Eulerian model may consist of multiple sub-models that compute hy-
drodynamics, waves, sediment transport, atmospheric conditions, 
depending on the complexity of the intended modeling and information 
needed for input to the PTM (Fig. 1). However, for the purpose of this 
study, which is focused on the numerical methodology of the PTM, the 
Eulerian model consists of a hydrodynamic model only. 

2.1. Hydrodynamic model 

The (Eulerian) hydrodynamic model is based on TELEMAC-3D, a 
three-dimensional, finite-element based, shallow water equations solver 
(Hervouet, 2007). The 3D computational mesh consists of triangular 
prism elements, generated by layering a series of plane, unstructured 
(triangular) meshes between the water surface and the bed. At each time 
step, the hydrodynamic model output is provided at the six vertices (xi, 
yi,zi) of each triangular prism element within the computational domain 
(Fig. 2). 

For the vertical discretization, either a sigma (bathymetrically con-
forming) or a fixed layer system can be adopted. If a sigma-layer system 
is chosen, the vertical position of vertices (zi) will also be calculated at 
each time step of simulation. TELEMAC-3D provides multiple options for 
horizontal and vertical turbulence closure models, which can be used to 
calculate turbulent viscosity throughout the domain during the simu-
lation. Assuming eddy viscosity (υ) is equal to diffusivity (k) allows for 
spatially and temporally varying diffusivity to be estimated based on the 
eddy viscosity (υtx, υty, υtz) from output of the hydrodynamic model, and 
used as input to the PTM. 

The TELEMAC-3D model is part of the TELEMAC modeling system, 
which comprises several additional modules that can be used to simulate 
wind waves, sediment transport and water quality. Here, the PTM relied 
only on information provided by the hydrodynamics module. The hy-
drodynamic model and the PTM were coupled ‘offline’, meaning that 
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Fig. 1. CaMPSim-3D framework.  

Fig. 2. A typical triangular prism cell in the TELEMAC-3D output. Water properties at the particle location are linked to 6 surrounding vertices based on the relative 
distances (αi). 

A. Pilechi et al.                                                                                                                                                                                                                                  



Marine Pollution Bulletin 184 (2022) 114119

5

information on hydrodynamics was passed to the PTM only, with no 
feedback. 

2.2. Particle Tracking Model (PTM) 

The three-dimensional PTM reads the computed velocity field (ui,vi, 
wi), vertical elevations (zi), and eddy viscosity (υtx, υty, υtz) from the 
output file of the TELEMAC-3D hydrodynamic model at each time step, 
and uses this information as the basis for computing the fate and 
transport of microplastics particles within the computational domain. 

The PTM computations involve four main processes/steps, which are 
implemented for all particles at each time step of a simulation:  

1) Point location, i.e., identification of the Eulerian mesh element in 
which the particle resides;  

2) Interpolation (spatially) of hydrodynamic information from the 
Eulerian (hydrodynamic model) mesh to the particle position;  

3) Advection and dispersion, i.e., simulation of particle transport;  
4) Transformation, i.e., computing state variables and processes (e.g. 

biofouling, degradation). 

The methodology for each of these processes is described below. 

2.3. Point location 

Finding the address of the Eulerian mesh element containing a par-
ticle (host element) is a computationally demanding (i.e., time- 
consuming) process for PTMs that are coupled with Eulerian models 
utilizing unstructured grids. The process is generally known as the 
“point location” problem (de Berg et al., 2008) in the computational 
geometry context. Examples of different methodologies aimed at opti-
mizing point location queries in planar (2D) and spatial (3D) spaces are 
described by Kirkpatrick (1984) and Preparata and Tamassia (1992). By 
contrast to unstructured meshes, point location within uniform, regular 
Cartesian grids is straightforward. To take advantage of efficiencies, a 
Cartesian-based method is therefore used here to locate points within 
the unstructured Eulerian mesh. A Cartesian grid is generated, over-
laying the Eulerian model unstructured mesh (Fig. 3). Each rectangular 
cell of the Cartesian grid is called a Zone (dashed line in Fig. 3). The 
triangular mesh elements occupying each Zone are identified only once 
at the beginning of the simulation, which makes the approach compu-
tationally efficient. At each time step of the simulation, the Zone in 
which each particle is located is first identified. Only triangular elements 
located within the Zone associated with each particle are then searched 
to assign elements to their respective particles. 

2.4. Interpolation 

Prior to computing advection and dispersion of particles, the PTM 
requires that input from the Eulerian (hydrodynamic) model be trans-

formed to the Lagrangian frame of reference, by mapping or interpo-
lating hydrodynamic parameters in space to each particle. However, the 
choice of interpolation method can significantly affect accuracy and 
computational efficiency. A comparison of some interpolation methods 
is provided in Jacob et al. (2007) and van Hinsberg et al. (2013). Here, a 
computationally efficient inverse distance weighted (IWD) scheme 
(Chen et al., 2015) was employed, whereby the value of any parameter 
Bp at Xp (the position of particle P) is calculated based on the discrete 
values of the parameter (Bi) at the six vertices of the encompassing 
element (i = 1 to 6) and the distances between the particle and each of 
the vertices (αi in Fig. 2), i.e.: 

Bp =
∑6

i=1

1
αi

Bi

/
∑6

i=1

1
αi

(2)  

2.5. Advection and dispersion 

Following conventional particle-tracking model formulations, the 
change in position of a particle in response to advection and diffusion 
over a discrete time step (Δt) can be described by (Lebreton et al., 2012; 
Kako et al., 2011; Yoon et al., 2010; Jalón-Rojas et al., 2019): 

dxp

dt
= Adv+Diff (3)  

where xp(t) represents the position (in three-dimensional Euclidean 
space) of particle P at time t. The advection term (Adv) in Eq. (3) rep-
resents transport of the particles by the ambient velocity field. The above 
equation belongs to the general family of Langevin equations (Nanda-
kumar, 2021). 

Using a kinematic approach, PTM models normally use Adv = Up 
where Up is the particle velocity calculated from Eq. (2) (Jalón-Rojas 
et al., 2019; Liubartseva et al., 2018).. In addition to advection and 
diffusion, the displacement in time of particles in the vertical direction is 
influenced by their settling/rising velocities. The vertical component of 
the particles velocity (wp) is calculated based on Eq. (4) where ws, 
depending on the relative density to water (RD), may be negative for 
settling particles (for RD > 1), or positive for buoyant particles (RD < 1). 
The settling/rising velocity of a particle is linked to its physical prop-
erties (i.e. dimension, shape, gravity), and is normally calculated from 
empirical relationship derived from laboratory testing. The settling/ 
rising velocity of a particle is linked to its physical properties (i.e. 
dimension, shape, gravity), and is normally calculated from empirical 
relationship derived from laboratory testing. 

wp =

∑6

i=1

1
∝i

wi

∑6

i=1

1
∝i

+ws (4) 

In CaMPSim, ws is calculated from Eq. 5 based on the Newton's 
impact formula (Dellino et al., 2005) where d* is the diameter of an 
equivalent sphere, ρ is the water density, ρp is the particle density, g is 
the gravity acceleration, and CD is the drag coefficient calculated using 
Eq. 6 (Dioguardi et al., 2017) as a function of particle shape factor ψ and 
particle Reynolds number (Rep). Eq. 6 is applicable to all main shape 
classes of microplastics (i.e. spheres, fragments, fibres and films), and 
has been identified by Van Melkebeke et al. (2020) as the most appro-
priate drag model for describing sinking behaviour of microplastics. 

ws =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4
3

d*

CD

⃒
⃒
⃒
ρs − ρ

ρ

⃒
⃒
⃒g

√

(5)  

CD =
24
Rep

(
1 − ψ
Rep

+ 1
)0.25

+
24
Rep

(
0.1806Rep

0.6459)ψ − Rep
0.08

+
0.4251

1 + 6880.95
Rep

ψ5.05

(6) Fig. 3. Schematic of point location method. Black dashed line represents a 
Zone on the background Cartesian grid. 
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In the test cases investigated in this study, all particles were assumed 
to be neutrally buoyant and mass-/dimension-less, such that eqs. 5 and 6 
were not activated in the model. A first-order approximation of the 
advection term is Adv = Up. For a more accurate treatment of advection, 
a second-order approximation of the advection term was applied 
following Iwasakia et al. (2017): 

Adv = Up +
DUp

Dt
UpΔt (7)  

where 

DUp

Dt
=

1
2

(

U • ∇U +
∂Up

∂t

)

(8)  

where Ui (ui,vi,wi) is the three-dimensional velocity vector provided by 
the hydrodynamic model on the Eulerian grid. In Eq. 8, the velocity 
gradient in the horizontal direction is calculated by averaging the 
gradient values for the top and bottom (triangular) faces of the cell, 
following the approach of (Mohammadian and Le Roux, 2006), i.e.: 
(

∂U
∂x

)

=
1
Ai

∫ ∂U
∂x

dA ≈
C1Δy1 + C2Δy2 + C3Δy3

Ai
(9)  

(
∂U
∂y

)

=
1
Ai

∫ ∂U
∂y

dA ≈
C1Δx1 + C2Δx2 + C3Δx3

Ai
(10)  

Ai =
1
2
[(x2y3 − x3y2) − (x1y3 − x3y1)+ (x1y2 − x2y1) ] (11)  

where Ai is the area of the top and bottom triangular face of the cell 
(Fig. 2). Other parameters in Eqs. 9 and 10 are defined as, 

Δx1 = x3 − x2 Δy1 = y3 − y2 (12)  

Δx2 = x1 − x3 Δy2 = y1 − y3 (13)  

Δx3 = x2 − x1 Δy3 = y2 − y1 (14)  

C1 =
1
4
(U2 +U3 +U5 +U6) (15)  

C2 =
1
4
(U1 +U3 +U4 +U6) (16)  

C3 =
1
4
(U1 +U2 +U4 +U5) (17) 

The velocity gradients in the vertical direction (∂U/∂z) are calculated 
for corresponding (overlaying) nodes on top and bottom (triangular) 
faces of the cell, and mapped/interpolated to each particle using the 
IWD method. The second term on the right-hand side of Eq. 3 (Diff) 
represents the effect of turbulent diffusion (and dispersion arising from 
velocity gradients not resolved by the computational mesh) on particle 
motion. Diffusion or dispersion of particles may be approximated as a 
random walk process, i.e., Diff = R

Δt

̅̅̅̅̅̅̅̅̅̅̅
2KΔt

√
, where R is a random number 

between − 1 and 1 from a standard normal distribution, and K is the 
diffusion (or dispersion) coefficient (Israelsson et al., 2006; Salamon 
et al., 2006). This formulation is referred to as the naïve random walk 
model (Hunter et al., 1993; Visser, 1997), and is based on the assump-
tion that K is uniform in space and constant in time. However, this 
assumption is violated in many aquatic environments where turbulence 
properties vary in time and space. Under such conditions, the naïve 
random walk model can lead to artificial accumulation of particles in 
high actual diffusivity regions (Hunter et al., 1993; Visser, 1997). Here, 
as novel approach in the context of microplastics fate and transport 
modeling, a modified diffusion term (Hunter et al., 1993) is employed to 
correct for such errors, i.e.: 

Diff =
∂Kp

∂X
+

R
Δt

{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Kp

[

Xp(t) +
1
2

∂Kp

∂X
Δt

]

Δt

√ }

(18)  

where Kp represents the diffusivity coefficient at Xp at time t, and is 
calculated based on Eq. (2) using the eddy viscosities (νt) provided by 
the hydrodynamic model on the Eulerian grid, and assuming the tur-
bulent Schmidt number, Sct = υt / Kp = 1. If the diffusivity coefficient is 
uniform in space, ∂Kp/∂X = 0 in Eq. 18 and the diffusive random walk 
model simplifies to the naïve random walk model. 

The particles that collide horizontally (land/shoreline) or vertically 
(bed/water surface) with the model boundaries will continue to move 
along the boundary without any influence from the wall, which is also 
known as a free-slip boundary condition. However, CaMPSim includes a 
provision for parameterizing particle interaction with the bed (deposi-
tion and re-suspension) and land (beaching and washing off). However, 
these processes were not activated in this study. Sedimentary processes 
are expected to be governed, in part, by bottom shear stress, which can 
be provided by the hydrodynamic model. Thresholds for deposition or 
incipient motion of plastic particles depend on parameters such as 
particle size, geometry, and density. Parameterization of these processes 
will rely heavily on previous applications of particle-tracking models for 
sediment transport problems (e.g. Herrera-Díaz et al., 2017; Barati et al., 
2018) while taking into account aspects specific to microplastics (Liu-
bartseva et al., 2018; Jalón-Rojas et al., 2019) such as the effects of 
biofouling on polarity and adhesiveness (Wu et al., 2020; Van Melke-
beke et al., 2020). 

2.6. Transformation 

Changes in the physical properties of microplastics (transformation) 
in a water environment can be caused by a variety of processes such as 
aggregation with other suspended particles or sediments, the formation 
of biofilms (biofouling) on the surface of particles, and fragmentation to 
smaller particle sizes caused by degradation processes (Weinstein et al., 
2016; Jahnke et al., 2017; Kaandorp et al., 2021). All transformation 
processes are generally influenced by two groups of parameters: 1) the 
ambient environmental conditions such as water temperature, salinity, 
pH and ultraviolet light exposure, and 2) the physio-chemical charac-
teristics of the particles such as polymer type, size, shape, and density. 
The transformation processes influence the transport of microplastic 
particles in water by modifying the particle properties, and conse-
quently, the hydrodynamic forces. 

CaMPSim can simulate, using empirically derived relationships to 
ambient water conditions, particle size changes resulting from trans-
formation processes including biofouling (Kooi et al., 2017), and 
degradation (Jalón-Rojas et al., 2019). 

3. Numerical solution 

This section describes the numerical methodology employed in the 
PTM for solving the advection-diffusion equation (Eq. 2). The numerical 
schemes employed in the model for solving advection and diffusion 
processes are discussed separately in this section. For each process, the 
model performance is assessed by comparing the results of simulations 
with known analytical solutions for test cases. 

3.1. Advection 

The importance of using an accurate numerical scheme for advection 
in PTMs has been discussed by Wolk (2003), Lee et al. (2013) and Gräwe 
et al. (2012). Complex, high-order numerical methods generally provide 
more accurate predictions than simple, low-order methods. However, 
higher-order schemes are generally associated with a higher computa-
tional cost. Balancing accuracy requirements with computational effi-
ciency is a key consideration in choosing appropriate numerical 
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methodologies for PTMs, particularly for applications that consider 
transport and other processes that span long temporal and large 
(regional) spatial scales. For long simulations, small errors in computing 
particle velocities or translations can accumulate over time, and lead to 
significant errors in predicted pathways and the fate of particles. Here, 
six popular numerical advection schemes are investigated: Euler, 
Second-order Runge–Kutta (RK2), Third-order Runge–Kutta (RK3), 
Fourth-order Runge–Kutta (RK4), Second-order Total Variation Dimin-
ishing (TVD2) Runge-Kutta, Third-order Total Variation Diminishing 
(TVD3) Runge–Kutta, and Second-order Adams-Bashforth (AB). For-
mulations of these methods are summarised in Table 2, where super-
scripts n and n + 1, denote variables at time t and t + Δt, respectively. 

The accuracy of each scheme was assessed by comparing the 
modeled results to known analytical solutions for four 2D and one 3D 
test cases (analytical tests). For each test case, a specific velocity field was 
generated on a uniform, unstructured mesh, consisting of triangular 
(2D) or triangular prism (3D) elements with characteristic edge lengths 
equal to 10 cm. One particle was released in the computational domain 
and the trajectory computed by the numerical model was compared with 
the analytical solution. A summary of the analytical tests specifications 
including information on the velocity field and the particle trajectory is 
provided in Table 3. The time step was 0.1 s in all tested cases. The 
performance of numerical methodology was analyzed through calcu-
lating the Root Mean Square Error (RMSE), and normalized Mean Ab-
solute Error (NMAE): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M

∑M

m=1

∑3

j=1

(
XpModeled − XpAnalytic

)2

√
√
√
√ (19)  

NMAE =
1
M

∑M

m=1

1
3
∑3

j=1

⃒
⃒
⃒
⃒
⃒

XpModeled − XpAnalytic

XpAnalytic

⃒
⃒
⃒
⃒
⃒

(20)  

where M is the total number of modeled particles, XpModeled and XpAnalytic 
are vectors representing the particle position in 3D space (x,y,z) based 
on the model results and the analytical solution respectively. 

3.2. Diffusion 

The PTM performance in simulating diffusion was evaluated by 
comparing the model results to the analytical solution of the diffusion 
equation (Eq. 21) for a one-dimensional test case. The initial condition 
was an instantaneous release of 250,000 particles, following a Gaussian 
distribution. Following the release, the particles were allowed to move 
in response to diffusion only (Eq. 2). Over 100 s were simulated with 
time step of 0.1 s using naïve random walk formulation with constant 
diffusion coefficient K = 0.001 m2/s. 

C(X, t) =
C0
̅̅̅̅̅̅̅̅̅
4πK

√ e
− (X)2

4Kt (21) 

To convert PTM output (particle positions) to concentrations for 
comparison to the analytical solution of the diffusion equation, a rect-
angular structured grid with a uniform cell size of 5 cm was created. This 
cell size was chosen based on a sensitivity analysis to ensure the effect of 
grid resolution on the model results is <3 %. For each cell, the con-
centration at any time was computed as the ratio of the number of 
particles occupying the cell to the total number of particles released in 
the model. 

3.3. Sensitivity test to advection schemes 

The influence of the Advection scheme methodology on PTM anal-
ysis for a real-world application (lower Saint John River estuary, in 
eastern Canada) was investigated. The PTM was used to simulate 
advection and dispersion of particles representing microplastics in an 
approximately 75-km long reach of the Saint John River from Evandale 
to the Bay of Fundy (Fig. 4). The PTM model used the velocity field, 
water levels, and eddy viscosity field from a TELEMAC-3D hydrody-
namic model previously developed by Vouk et al. (2019) to simulate 
dispersion and transport of effluent plumes within the Saint John River 
estuary. The hydrodynamic model is driven by fluvial flows at two up-
stream boundaries and tidal elevations at the downstream boundary in 
the Bay of Fundy. The hydrodynamic model was previously calibrated 
and validated previously using water levels, velocities, and salinity and 
temperature profiles at several locations. Multiple scenarios were 
simulated using the various numerical schemes (Euler, RK2, RK3, RK4, 
TVD2, TVD3, AB), and the influence of numerical methods in predicting 
particles accumulation zones was analyzed. 

The particles were assumed neutrally buoyant and massless. Two 
scenarios were simulated, referred to as Sc1 and Sc2. In Sc1, 62,868 
particles were initially distributed uniformly throughout the computa-
tional domain at horizontal intervals of 75 m (in both north-south and 
east-west directions). The duration of the Sc1 simulation was 15 days, 
spanning one full spring-neap tidal cycle. For Sc2, 6811 particles were 
uniformly distributed at 25 m horizontal intervals within Zone 1 (Fig. 4), 
and their movement was simulated for 7 days. Both Sc1 and Sc2 simu-
lations were conducted following an initial 11-day spin-up period of the 
hydrodynamic model. The PTM time step was 15 min, which was set 
based on the time step of the output from the hydrodynamic model. 

4. Results and discussion 

The boxplot graphs in Fig. 5 represent comparison of RMSE and 
NMEA for the examined advection schemes in the analytical tests 
(Table 3). For each box, the upper and lower whiskers show the 
maximum and minimum, respectively, and the horizontal bar in the 
center of the box represents the median. RK4 showed the best perfor-
mance (i.e. the minimum average RMSE and NMAE) among the 
employed advection schemes, followed by TVD3 and RK2, respectively. 
Despite having the same order of accuracy, the RK2 method generally 
showed a better performance than TVD2 in all of the analytical test 
cases. As expected, the Euler method, which is the lowest order method 
examined here, performed worst in terms of particle advection accuracy. 

Table 2 
Formulations of the examined numerical schemes for the advection process.  

Order Method Formulation 

First- 
order 

Euler Xn+1 = Xn + U(xp
n,yp

n)Δt 

Second- 
order 

Adams-Bashforth (AB) Xn+1 = Xn +
3
2

U
(

xn
p , y

n
p

)
Δt −

1
2

U
(

xn− 1
p , yn− 1

p

)
Δt 

Runge–Kutta (RK2) 
Xn+1 = Xn + U

(
x

n+
1
2

p , x
n+

1
2

p

)
Δt 

Runge-Kutta (TVD2) X * 
n+1 = Xn + U(xp

n,yp
n)Δt 

Xn+2 = X * 
n+1 + U(xp*n+1,yp*n+1)Δt 

Xn+1 =
1
2
(
Xn + Xn+2)

Third- 
order 

Third-order Total Variation 
Diminishing Runge–Kutta 
(TVD3) 

X* = Xn + U(xp
n,yp

n, tn)Δt 

X** =
3
4
Xn +

1
4
X* +

1
4

U
(

x*
p , y

*
p , t

n+1
)

Δt 

Xn+1 =
1
3
Xn +

2
3
X** +

2
3

U
(

x**
p , y**

p , tn+1/2
)

Δt 

Fourth- 
order 

Runge–Kutta (RK4) Xn+1 = Xn +
1
6
(k1 + 2k2 + 2k3 +

k4)Δt 
k1 = U(xp

n,yp
n) 

k2 = U
(

x
n+

1
2

p + k1
Δt
2
, y

n+
1
2

p + k1
Δt
2

)

k3 = U
(

x
n+

1
2

p + k2
Δt
2
, y

n+
1
2

p + k2
Δt
2

)

k4 = U(xp
n+1 + k3Δt,yp

n+1 + k3Δt)  
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In most of the analytical test cases, the calculated error for the Euler 
method is orders of magnitude higher than other methods, illustrating 
the importance of using higher order schemes in Lagrangian simula-
tions. For example, an error associated with the Euler scheme for a 
particle transported in analytical test case 3 can cause >1.5 km devia-
tion in the particle position over a period of 10 days compared to <1 cm 
deviation with RK4 scheme. The AB advection scheme gave the highest 
errors among the higher order methods investigated. 

In order to analyse the temporal accuracy of the model, a systematic 
error analysis was performed by successively reducing time step sizes 
and monitoring the local error, which is defined as: 

ErrLocal = XAnalytic − XNumeric  

at time t = 10 s for Test 1 (described in Table 3). Fig. 6 illustrates the 
error generated by different advection schemes examined in this study. 
As shown in Fig. 6, the convergence of plotted errors corresponded to a 
theoretical order of accuracy in the log-log coordinate equal to 1, 2 and 4 
for the first-order (Euler), second-order (RK2, TVD2) and fourth-order 
(RK4) schemes, respectively. The slope of the line drawn through 
plotted local errors for the TVD3 was similar to the RK4 scheme, which 

indicates that the accuracy of TVD3 exceeded the theoretical accuracy of 
a third order-scheme. 

For the diffusion test case, the analytical solution were compared to 
the numerical model (PTM) results at different snapshots of a 100 s 
simulation in Fig. 7. The advection process was not simulated in this test. 
The correlation between the numerical model predictions and the 
analytical solution for the diffusion test case is shown in Fig. 8, with a 
correlation coefficient of R2 = 0.9966. 

All simulations conducted for Sc1 indicated that Zone 1 and Zone 2 
(Fig. 4) represented trap areas for particles introduced to the Saint John 
River system. The influence of using different advection scheme on the 
PTM predictions was assessed by comparing the ratio of number of 
particles residing in Zone 1 (Np1) and Zone 2 (Np2) to the total number of 
particles (Nptotal) over the simulation period (Fig. 9). Sc1 resulted in an 
increasing number of particles in Zones 1 and 2 over the simulation 
period, for all 6 advection schemes tested. RK4 (the most accurate 
scheme based on the analytical tests) predicted the slowest rate of par-
ticle accumulation in Zone 1 and the highest rate of accumulation in 
Zone 2. The TVD3 method provided the closest results to RK4 in terms of 
predicting the number of particles in each zone (Fig. 9). The TVD2 and 

Table 3 
Specification of the analytical test cases used to evaluate the advection schemes.  

Test number Velocity field Particle trajectory Particle trajectory shape 

Test1 
(Fabbroni, 2009) 

u = u0 cos (ωt) 
v = − v0 sin (ωt) 
u0 = 0.5 
ω = 1.0 

x = x0 +
u0

ω sin(ωt)

y = y0 −
u0

ω (1 − cos(ωt)) 

-1.5

-1

-0.5

0

0.5

1

1.5

3.5 4.5 5.5 6.5

Y
 (

m
)

X (m)

Test2 
(Fabbroni, 2009) 

u = ug + u0 cos (ωt) 
v = − (u0 − ug) sin (ωt) 
u0 = 0.5 
ug = 0.1 
ω = 1.0 

x = x0 + ugt+
u0− ug

ω sin(ωt)

y = y0 −
u0 − ug

ω (1 − cos(ωt)) 

-0.5

-0.3

-0.1

0.1

0.3

0.5

4.5 5.5 6.5 7.5

Y
 (

m
)

X (m)

Test3 
(Fabbroni, 2009) 

u = uge− γt + (u0 − ug)e− γt cos (ωt) 
v = − (u0 − ug)e− γt sin (ωt) 
u0 = 1.2 
u0 = 0.15 
γ = 0.01 
γg = 0.01 

x = x0 +
ug

γg
(1 − e− γt)

+

(
u0 − ug

)
ω

ω2 + γ2 
[ γ
ω + e− γt

(
sin(ω) − γ

ωcos(ω)
) ]

y = y0 −

(
u0 − ug

)
ω

ω2 + γ2 
[
1 − e− γt ( cos(ω) + γ

ωcos(ω)
) ]

-1.5

-1

-0.5

0

0.5

1

1.5

2.5 7.5 12.5

Y
 (

m
)

X (m)

Test4 u = ωy 
v = − ωx 
ω = 0.0628 

x2 + y2 = R/2π 

R

Test5 
(Strang, 2016) 

u = αβ exp (βt) cos (γt) − γexp(βt) sin (γt) 
v = αβ exp (βt) sin (γt) + γexp(βt)Cos(γt) 
w = αβ exp (βt) 
α = 0.8 
β = 0.12 
γ = 1.5 

x = α exp (βt) cos (γt) 
y = α exp (βt) sin (γt) 
z = α exp (βt) 

-200

-100

0

100

200

-200 -100 0 100 200

Y
(m

)

X (m)

X-Y

0

50

100

150

200

-200 -100 0 100 200

Z(
m
)

X (m)

X-Z
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TVD3 methods showed similar performance in predicting the number of 
particles in Zone 1 and Zone 2 for Sc1. 

In addition to accuracy, computational cost is another important 

factor influencing selection of methodology for a numerical model. An 
optimum numerical method provides a balance between accuracy and 
computational cost based on characteristics of the intended application. 
To illustrate the computational demand of the advection schemes in this 
study, the time required to simulate 500 time steps (125 h) of Sc1 with 
different advection schemes on a an Intel Core i7 workstation with 2.0 
GHz CPU and 8 GB of RAM is compared in Fig. 10. The most accurate 
advection scheme (RK4) took twice as long as the AB and Euler methods 
to complete the simulation. The computational costs of the TVD2 and 
TVD3 schemes are approximately 21 % and 27 % faster than the RK4 
method, respectively. The RK2 method, the third most accurate advec-
tion method was 31 % slower than the fastest methods (Euler and AB), 
and approximately 37 % faster than the RK4 method (the slowest but 
most accurate method). 

Addition of the second term in the advection equation (Eq. 7) showed 
negligible influence on the model results in the analytic tests but caused 
approximately 67 % increase in the number of particles in Zone 1 after 4 
days of the Sc1 simulation with RK4 advection scheme (Fig. 11). The 
extra computation imposed by addition of the second term also increase 
computational cost of the simulation by 15 %. The significant influence 
of the second term on the model results is attributable to strong spatial 
and temporal gradients of the ambient velocity field resulted from 
complex morphology and highly variable discharge of the Saint John 
River estuary. 

The influence of employing a spatio-temporally varying diffusion 
coefficient (modified random walk model) on the PTM predictions was 
investigated for Sc1. The number of particles in Zone 1 after 480 steps (4 
days) of simulation predicted by the modified random walk model with 
the RK4 advection scheme was compared to the number of particles 
predicted by the naïve random walk model (Fig. 12). The naïve random 
walk model was tested for 7 different configurations for combinations of 
2 horizontal (Kh = 1, 10 m2/s) and 4 vertical (Kv = 10− 5, 10− 4, 10− 3, 
10− 2 m2/s) diffusivity coefficients. The configurations were selected 
based on the ranges of the horizontal and vertical eddy viscosities 
calculated by the hydrodynamic model. In general, the naïve random 
walk model predicted a more rapid accumulation in Zone 1 over the first 
2 days of the simulations, seemingly consistent with arguments by 
Hunter et al. (1993) and Visser (1997) that the naïve random walk 
model may cause artificial accumulation of particles in low diffusivity 
regions. Lower horizontal diffusion coefficients predicted faster accu-
mulation of particles in Zone 1 during the first 12 h of the simulations. 
By contrast to the modified random walk model, the naïve random walk 
model predicted a gradual decrease in the number of particles in Zone 1 
from day 2 of the simulation, with more particles retained for higher 
vertical diffusion coefficients. This suggests that, despite initially pre-
dicting increases in the number of particles retained in low diffusivity 

Fig. 4. Computational grid of the hydrodynamic model.  

Fig. 5. RMSE (Left) and NMEA (Right) across all analytical tests by advection scheme.  
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regions, application of the naïve random walk model in PTMs could 
ultimately underestimate residence times of particles in these regions. 

For the Sc2 simulation, the particle count within Zone 1 over time is 
presented in Fig. 13. The results show that between 81 % and 98 % 
(depending on the advection scheme) of particles released into Zone 1 
remained trapped in the region over the entire 15-day simulation period. 
The number of particles in Zone 1 at the end of the simulation was 
approximately 9 % higher using TVD2 than TVD3. The number of par-
ticles remaining in Zone 1 applying the RK2 and Euler methods was 
resulted in up to 3 times larger than the model predictions with the RK4 
method. Approximately 5 to 10 % of the particles released into Zone 1 
exit the region within the first five time steps of the simulation (Fig. 13). 
However, this sharp drop in the number of particles within Zone 1 

recovers within the next 24–48 time steps (i.e. 6–12 h) as particles re- 
enter the zone, for all advection schemes except RK4 and TVD3. This 
behaviour is associated with strong temporal and spatial gradients in the 
ambient velocity field and complex system hydrodynamics, driven by 
strong and highly variable tides in the Bay of Fundy and fluvial flows. 

Comparison of the Sc1 and Sc2 model results for different advection 
schemes reveals significant sensitivities to the advection scheme. 
Appropriate selection of advection schemes is therefore likely to be 
important in accurately and realistically predicting fate and transport of 
microplastics in real world settings. 

In summary the model demonstrated to be able to successfully 
simulate transport of particles in a variety of test cases representing 2D 
and 3D conditions. Although in all of the test cases investigated in this 
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Fig. 6. Local error of the numerical solution of Test 1 (Table 3) at t = 10 s for the tested numerical schemes in this study in the log-log coordinate.  

Fig. 7. Snapshots of the numerical model results and the analytical solution for diffusion test.  
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study particles were assumed to be neutrally buoyant and mass-/ 
dimension-less, the model has built-in capabilities to incorporate the 
influence of particles physical characteristics (i.e. shape, size, density) 
on the transport process. Biofouling and degradation processes can be 
simulated by the model. Coagulation process is not currently imple-
mented in the model. Free-slip boundary conditions were applied in all 
of the tests. The diffusion validation test was conducted using constant 
diffusivity, whereas the Saint John River simulations were conducted 
using variable diffusivity feature of the model. The model has other 
potential capacities such as modeling beaching and washing-off pro-
cesses, and considering the influence of wind and wave actions on 
particles transport which were not presented here. 

5. Summary and conclusion 

In this study a 3D numerical particle tracking model (PTM) was 
developed and coupled with TELEMAC-3D hydrodynamic model, to 
provide a new framework (CaMPSim-3D) for simulating transport of 
microplastics in rivers, lakes, estuaries, coastal waters, and oceans. The 
PTM calculates movement of microplastics in different water settings 
based on the information provided by the hydrodynamic model. The 
PTM works with a hydrodynamic model based on an unstructured grid. 
This unique feature, which is not available in most of the previous 
models, makes the PTM an appropriate choice for modeling 

microplastics transport in aquatic environments with irregular geome-
tries and complex hydrodynamics such as rivers and estuaries. 

The study also investigated the influence of different advection 
schemes on the PTM accuracy and computational efficiency. Six nu-
merical schemes with different levels of complexity were selected, and 
their performance with respect to the computational demand and pre-
dicted results were compared for a series of analytical tests, and a real 
world model of the lower Saint John River estuary. Significant differ-
ences were observed between the Euler method (traditionally used in 
PTMs) and higher order schemes, demonstrating the importance of using 
more accurate advection schemes in the PTM. The RK4 method provided 
the most accurate predictions in the analytical test. The TVD3 method 
provided results that were reasonably consistent with RK4 with 
approximately 27 % lower computational cost. For a quiescent bay on 
the periphery of the main channel of Saint John River estuary (Zone 1), 
the standard Euler advection scheme predicted approximately 13 % 
higher particle retention compared to the most accurate scheme (RK4). 
The observed sensitivity to the employed advection scheme demon-
strates the importance of the numerical method in accurately predicting 
residence times in real-world settings, with knock-on implications for 
predicting time-dependent microplastic transformation processes, and 
ultimately, environmental effects. 

The PTMs capability to incorporate spatio-temporally varying dif-
fusivities (i.e., the modified random walk) is deemed an important 
improvement over existing PTMs used for modeling microplastic fate 
and transport, for reasons described by other authors (e.g. Hunter et al., 
1993; Visser, 1997). Compared to the naïve random walk model, the 
modified random walk model predicted a two-fold difference in the 
number of particles accumulated in a side bay of the Saint John River 
estuary (Zone1). 

A new term was also added to the traditional advection equation to 
improve the model accuracy in simulating the advection process. 
Addition of the second advection term was observed to increase the 
computational cost in the model by 15 %, and caused a significant 
change (approximately 67 %) in the predicted number of particles in one 
of the accumulation zones within the lower Saint John River estuary. 

Some inconsistencies between model results for analytical tests and 
those for the real-world application (Saint John River model) warrant 
further investigation in the future. For example, the TVD2 scheme 
resulted in a higher error (assessed based on a comparison to RK4, the 
most accurate scheme) than the RK2 scheme in the analytical tests. 
However, TVD2 showed closer agreement than RK2 to RK4 in the Saint 
John River model, illustrating the need for field validation in the future. 
Further improvement and development of CaMPSim-3D is envisaged in 
the future, including: 1) integrating physio-chemical processes (e.g. 

Fig. 8. Correlation between numerical predictions and analytical solution for 
the instantaneous Gauss-distributed particle release test case for diffusion. 

Fig. 9. Time series of particle counts (normalized by the total number of particles) in Zone 1 (Left), and Zone 2 (Right) predicted using different numerical schemes 
for Sc1. 
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degradation, weathering, biofilm growth, agglomeration); 2) inte-
grating ice dynamics to driving transport processes influencing the 
transport of plastics such ice dynamics and; 3) adding back-tracing ca-
pabilities to the model to identify potential hotspots for accumulation, 
and sources of plastic pollution; 4) generalization of the model to further 
applications such as modeling oil spill, debris transport, surface drifters 
tracking; 5) parallelization of the model for CPU and GPU computations. 
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in the Sea. Università di Bologna, Bologna.  

Goeury, C., Hervouet, J.M., Baudin-Bizien, I., Thouvenel, F., 2014. A Lagrangian/ 
Eulerian oil spill model for continental waters. J. Hydraul. Res. 52, 36–48. 
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