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1. Introduction 
 
Marine biodiversity is under increasing human pressure and many species of marine 
vertebrates have declined over the past decades (Halpern et al., 2008). The decline of many 
seabird species is directly linked to high mortality at sea due to fisheries bycatch (Croxall and 
Rothery, 1991; Oro et al., 2004; Weimerskirch, 2002). Reducing mortality of seabirds and other 
marine biodiversity may be achieved by the designation and enforcement of marine protected 
areas (Game et al., 2009). 
 



Identifying marine areas that are suitable for protection to benefit seabirds requires a thorough 
understanding of the spatial distribution of seabirds at sea (Louzao et al., 2006a; Lovvorn et al., 
2009; Piatt et al., 2006). During the breeding season all seabirds are central place foragers, and 
the location of important foraging areas at sea are influenced by different factors such as prey 
avail-ability, foraging ranges and colony sizes of each species (Grecian et al., 2012; Huettmann 
and Diamond, 2001; Thaxter et al., 2012). Outside the breeding season, however, many species 
roam widely or migrate long distances, and use distinct areas for stop-over (Guilford et al., 
2009). Because these foraging areas along migratory routes are equally important for the 
conservation of sea-birds, the identification and protection of those areas is a key priority for 
seabird conservation (BirdLife International, 2010b; Oppel et al., 2009; Piatt et al., 2006). 
 
Determining the spatial distribution of seabirds during the non-breeding period is difficult 
because logistical constraints generally limit surveys to subsets of the area of interest. The 
increasing avail-ability of large-scale remote sensing data, which can be used as environmental 
predictor variables, makes it possible to use statistical models to predict species distributions 
over large areas (Elith and Leathwick, 2009; Tremblay et al., 2009). Several statistical modelling 
techniques have been used to predict the occurrence and abundance of seabirds at sea 
(Huettmann and Diamond, 2006; Louzao et al., 2009; Nur et al., 2011; Tremblay et al., 2009; 
Yen et al., 2004). Currently, however, it is not clear how modelling methods differ in their ability 
to predict species distributions (Elith and Graham, 2009), and which approaches yield the most 
reliable predictions for seabirds. 
 
The number and complexity of modelling techniques used to predict species distributions has 
increased substantially over the past decades (Hegel et al., 2010), and several comparisons of 
model performance have been carried out for terrestrial species (e.g., Elith and Graham, 2009; 
Elith et al., 2006; Segurado and Araújo, 2004). In contrast, the marine environment is less 
studied and more challenging given its dynamic nature (Ready et al., 2010; Robinson et al., 
2011; Wakefield et al., 2009). Furthermore, seabirds are highly mobile species, and their 
presence at certain locations varies temporally depending on whether an area is used during 
the breeding season, as a migration stopover, or as moult refuge (Tremblay et al., 2009). A 
comparison of the performance of different models that predict distributions and abundances 
of seabirds based on shipboard survey data has to our knowledge only been explored for one 
coastal species (Yen et al., 2004), yet the bourgeoning interest in the identification of pelagic 
marine protected areas warrants a comparison of newer distribution modelling techniques. 
 
Here we compare the performance of five modelling techniques to predict the occurrence and 
abundance of a migratory seabird species outside of the breeding season. The Balearic 
Shearwater (Puffinus mauretanicus) is a critically endangered species that breeds only at the 
Balearic archipelago in the western Mediterranean, and migrates to the North-East Atlantic 
after the breeding season (Brooke, 2004). The species suffers from high adult mortality at sea 
(Oro et al., 2004), and most research efforts have focused on understanding foraging ecology 
and distribution during the breeding season in the Mediterranean (Bartumeus et al., 2010; 
Louzao et al., 2006a, 2006b). Marine protected areas are needed for Balearic Shearwaters 
throughout its range, and although both Spain and Portugal have delineated marine important 



bird areas (IBAs, Arcos et al., 2009; Ramírez et al., 2008), most of these areas were still not 
legally protected as of October 2011 (BirdLife Inter-national, 2010a). 
 
Our model comparison aims to inform seabird conservation managers about the performance 
of modelling techniques that can be used to predict the spatial distribution and abundance of 
seabirds for the identification of marine IBAs or protected areas. We tested model predictions 
against independent data and com-pared predicted distributions with the locations of existing 
marine IBAs to evaluate whether our model results agree with IBAs that were identified with a 
variety of different methods (Ramírez et al., 2008). Thus, we provide information on which 
modelling techniques are useful for seabirds, and identify areas that may war-rant protection to 
benefit the Balearic Shearwater. 
 
 
2. Methods 
 
2.1. Data collection 
 
Between December 2004 and April 2009, we conducted ship-board surveys off the coast of 
Portugal and western Andalusia (Spain) between 36LN and 42LN, and 6LW and 10LW, covering 
an area of 3497 km2 (Fig. 1). Survey effort was carried out between March and November each 
year, with fewer surveys from December through February. A total of 1590 h of observations 
provided data for our analysis, and 84% of the survey effort was in Portuguese waters, 26% in 
Spanish waters. 
 
We used standard European Seabirds at Sea protocols for data collection (Camphuysen and 
Garthe, 2004; Tasker et al., 1984) on board four similar research vessels. All seabirds in contact 
with water within 300 m of the survey transect were counted on one side of the ship. All flying 
seabirds were counted using the ‘snap-shot method’, and bird observations were summed over 
5 min periods. Based on recorded vessel speed and the nominal width of the survey transect we 
then calculated the area surveyed (km2), and density of birds as the total number of observed 
birds divided by the area covered (birds kmÿ2). 
 
2.2. Data processing and exploratory analysis 
 
We first binned all observation data into a spatial grid with cell size 4 4 km to match the spatial 
resolution of remotely sensed environmental data. For each grid cell, we added the number of 
observed shearwaters during each season and year, and divided this number by the total area 
surveyed in this cell (here-after ‘effort’). We were not able to correct density estimates for 
detectability, as >70% of birds were recorded in flight without an estimated distance to the 
transect line. Because it is likely that detectability varied as a function of environmental 
conditions (e.g., sea state, cloud cover), our data provide an index of density rather than a 
robust estimate of absolute density. Although we recognise that detection of seabirds is 
imperfect (Ronconi and Burger, 2009), our objective was to evaluate a suite of modelling 



techniques, all of which used the same data set and therefore suffered from equal bias due to 
incomplete detection. Every grid cell that had a calculated density >0 received an additional 
binary detection/non-detection value of ‘1’ (hereafter referred to as ‘presence’), whereas grid 
cells that were surveyed, but where no Balearic Shearwaters were observed were coded as ‘0’ 
(hereafter referred to as ‘absence’). 
 
We defined ‘seasons’ based on the known phenology of Balearic Shearwaters in the North-East 
Atlantic (Mouriño et al., 2003; Ruiz and Martí, 2004; Yésou, 2003), and phenological data 
collected during this project (Ramírez et al., 2008). Balearic Shearwaters breed from late 
February to late June, and migrate west out of the Mediterranean and then north in the 
Atlantic between May and July. They moult in the Northeast Atlantic from June to August, and 
migrate back to the Mediterranean between September and December (Arcos et al., 2009; 
Mouriño et al., 2003; Yésou, 2003). We therefore considered three seasons: ‘spring’ (January 
through April, representing mostly non-breeding birds), ‘summer’ (May through August, 
corresponding to northward migration and moult), and ‘autumn’ (September through 
December, corresponding to southward migration). 
 
Spatial autocorrelation is frequently encountered in ecological data, and not properly 
accounting for spatial correlation can influence the statistical inference of species distribution 
models (Dor-mann, 2007; Dormann et al., 2007; Lichstein et al., 2002). We explored whether 
there was spatial autocorrelation in Balearic Shearwater distribution and density by calculating 
Moran’s I (Mor-an, 1950) and Geary’s C (Geary, 1954) for the 50 nearest neighbouring grid cells 
using the functions ‘moran.test’ and ‘geary.test’, respectively, in the R-package ‘spdep’. 
Moran’s I ranges from ÿ1 (perfect dispersion) to +1 (perfect correlation), with values around 
zero indicative of a random spatial pattern. Geary’s C ranges from 0 to 2, with values < 1 
indicative of positive spatial autocorrelation. We found little evidence for spatial 
autocorrelation in both the distribution (Moran’s I = 0.07 ± 0.05 standard deviation; Geary’s  
C = 0.92 ± 0.05 s.d.) and the density (Moran’s I = 0.02 ± 0.09 s.d.; Geary’s C = 0.98 ± 0.05 s.d.) of 
Balearic Shearwaters at the spatial scale of our grid cells (16 km2). Hence, we did not specifically 
incorporate measures to account for spatial autocorrelation in our models, but note that 
methods to incorporate spatial autocorrelation have recently become available (Hothorn et al., 
2011). Our models used latitude and longitude as predictor variables and therefore implicitly 
included some spatial structure. 
 
2.3. Environmental data 
 
To model Balearic Shearwater occurrence and density, we used 13 environmental variables 
(Table S1) that are either known, or suspected, to be correlated with seabird distribution and 
abundance (Louzao et al., 2006a; Tremblay et al., 2009; Wakefield et al., 2009). Physical 
variables (distance to coast, mean bathymetry, and bathymetry gradient) were extracted from 
global bathymetric data (www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html?dbase =GRDET2) 
using the cell value nearest to the centroid of each grid cell and were considered invariant 
throughout the period of our study. Dynamic oceanographic data (sea surface temperature, 
SST; chlorophyll a concentration, CHL; and sea surface height, SSH) were extracted as monthly 



averages from Aqua MODIS and Pathfinder AVHRR satellite imagery via NOAA’s BloomWatch 
data portal (http://coastwatch.pfel.noaa.gov/coastwatch/CWBrowserWW360. jsp), and varied 
among seasons and years in our study (Table S2). 
 
Composite front metrics (density of ocean fronts, and mean distance to nearest major ocean 
front) were derived from AVHRR satellite imagery (Miller, 2009). 
 
Seabird distribution is sometimes uncoupled from current oceanographic conditions measured 
by variables such as SST and CHL due to time lags between variables that can be measured and 
the factors (e.g. food availability) that actually attract seabirds (Wakefield et al., 2009). To 
account for these productivity time lags we integrated SST, CHL, and SSH over a period of three 
months prior to each season (Louzao et al., 2009; Table S1). We also included the temporal 
change in SST and CHL as predictor variables, calculated as (maximum SST ÿ minimum SST) 
100/maximum SST, with maxi-mum being the highest and minimum the lowest monthly mean 
SST value in each season. To account for annual anomalies, we included the SST anomaly for 
each season, calculated as the difference between the average value for a given season and 
year and the aver-age for that season over a 20-year period in that grid cell. Because seabirds 
may respond to spatial gradients of oceanographic variables (Louzao et al., 2006a; Tremblay et 
al., 2009; Wakefield et al., 2009), we also calculated spatial SST and CHL gradients as (maxi-
mum value ÿ minimum value) 100/maximum value, with maxi-mum being the highest and 
minimum the lowest seasonal mean SST or CHL value over a moving 5 5 grid cell window, thus 
representing 400 km2. This spatial scale was chosen because it provided an excellent fit to 
observed fronts in the Mediterranean in surveys for Balearic Shearwaters during the breeding 
season (Louzao et al., 2009; Louzao et al., 2006a). Finally, we used the SSH deviation and 
composite metrics of ocean fronts in each season as indicators of mesoscale structures that mix 
additional nutrients up into the sur-face layer. These structures can sustain higher 
phytoplankton and zooplankton productivity than surrounding water, and can provide foraging 
opportunities for seabirds. We did not aim to explore the functional relationships between 
Balearic Shearwater distribution and environmental variables, but this information is presented 
in the online supplement (Figs. S1–S17). 
 
2.4. Model construction 
 
For marine IBAs, identification criteria depend not only on the presence, but also on the 
abundance of birds in an area (BirdLife International, 2010b). Hence, useful models must 
predict both occurrence and abundance. Because of the high mobility of seabirds and imperfect 
detection at sea, shipboard survey data generally have highly skewed distributions with 
frequent non-detections (zeros). Such data are difficult to incorporate into standard para-
metric models (Martin et al., 2005; Sileshi et al., 2009; Warton, 2005). An efficient way to 
overcome these difficulties is to fit models in a hierarchical fashion (e.g., a ‘hurdle model’), 
including a component that estimates the occurrence probability, and a sub-sequent 
component that estimates the number of individuals given that the species is present (Millar, 
2009; Potts and Elith, 2006; Wenger and Freeman, 2008). We adopted that strategy by con-
structing two separate sets of models, one to predict the presence of Balearic Shearwaters, and 



one to predict the density of Balearic Shearwaters given their presence in an area. For 
comparison, we also included a zero-inflated modelling approach to estimate density, which 
accounts for the large number of non-detections by incorporating the two components 
described above into one frame-work (Martin et al., 2005; Potts and Elith, 2006; Warton, 2005). 
For the occurrence models, we compared five different model-ling techniques (for detailed 
information comparing these methods see Elith et al., 2006; Hegel et al., 2010; Prasad et al., 
2006): generalised linear models (GLM; McCullagh and Nelder, 1989), generalised additive 
models (GAM; Hastie et al., 2001; Wood and Augustin, 2002), and three machine-learning 
approaches: Random Forest (RF; Breiman, 2001; Cutler et al., 2007), boosted regression 
trees (BRT; Elith et al., 2008; Friedman, 2002), and maximum en-tropy (Maxent; Elith et al., 
2011; Phillips et al., 2006; Phillips and Dudik, 2008). All models were constructed in R 2.13.0 
with the packages ‘mgcv’, ‘gbm’, ‘randomForest’, and ‘dismo’ interfaced with the standalone 
MaxEnt program v. 3.3.3e. (http://www.cs.prince-ton.edu/~schapire/maxent/). Maximum 
entropy is a presence-only modelling approach that uses background samples of the 
environment rather than absence locations to estimate environmental relationships. We only 
used those grid cells that were surveyed in a given season and year as background data to 
facilitate a valid comparison with other models (Elith et al., 2011). Model specifications and 
software code used to construct the models are available in an online supplement (Appendix 
S2). 
 
We also estimated probability of presence based on an ensemble of all models, as such 
predictions are often more robust than predictions derived from a single model (Araújo and 
New, 2007; Marmion et al., 2009; Thuiller et al., 2009). Ensemble predictions were calculated as 
weighted averages of single-model predictions, with weights assigned to each modelling 
technique based on its discriminatory power as measured by the area under the receiver-
operated characteristic curve (Appendix S2; Araújo and New, 2007; Marmion et al., 2009; 
Thuiller et al., 2009). 
 
For the density model, we used the same modelling techniques as for presence, except for 
maximum entropy, which is currently not available for modelling non-binary response data. We 
used the Poisson distribution for the parametric models (the GLM density model, the GAM 
density model, and the zero-inflated GLM model), because it resulted in better predictions than 
the negative binomial distribution. Ensemble predictions of density were calculated as above 
for distribution models, but weighting of models was based on the Pearson correlation 
coefficient as an indicator. To avoid the influence of extreme observations, we excluded one 
outlying record of 702 Balearic Shearwaters in a grid cell. 
 
We included all environmental predictor variables in each of the modelling approaches. 
Because inclusion of a large number of variables may lead to over fitting in parametric models, 
we reduced GLM complexity by sequentially eliminating variables from a full model with all 
predictors until a minimum AIC was reached. In GAMs, we used the automatic term selection 
procedure which imposes a penalty to smooth functions and can thus effectively re-move terms 
from the model (Wood and Augustin, 2002). Machine learning approaches are generally robust 
to the inclusion of a large number of correlated variables (Archer and Kimes, 2008), and we 



therefore did not reduce the number of variables in these models. To predict the distribution 
and density for each season and year, we included ‘season’ and ‘year’ as factor variables in each 
model. In addition, we included latitude and longitude in all models, and the survey effort (in 
km2) per grid cell in all density models. 
 
2.5. Model evaluation and calibration 
 
We divided the survey data into training and test data by setting aside approximately 30% of 
the surveyed area for spatial evaluation of the models (Araújo and Guisan, 2006; Austin, 2007). 
All areas north of 39.7LN and south of 38LN were used to construct models (training data), 
whereas the data in the intermediate sector were used to evaluate the predictive performance 
of the models (test data, shaded grey in Fig. 1). This division provided sufficient presence data 
for all seasons in each of the three sectors (>20 grid cells each), and thus allowed for robust 
model testing. We assessed the performance of distribution models based on the accuracy of 
predictions for both the training and the independent test data, and report the area under the 
receiver-operating characteristic curve (AUC) as discrimination performance criteria. AUC 
ranges from 0 to 1, with values below 0.6 indicating a performance no better than random, 
values between 0.7–0.9 considered as useful, and values >0.9 as excellent. All model evaluation 
statistics were calculated using the package ‘PresenceAbsence’ in R 2.11.1 (Appendix S2). 
 
Spatial distribution models need to be well calibrated to be useful for predicting beyond the 
original spatial extent of input observations (Phillips and Elith, 2010; Reineking and Schröder, 
2006). In addition to discrimination, which measures a model’s ability to discriminate between 
presence and absence locations, calibration measures how well the frequency of observations 
in test data agrees with predicted probabilities of occurrence. To test calibration we used a 
linear regression of the relative frequency of observed presences over ten bins of predicted 
probabilities of presence implemented in a binned calibration plot using a custom-made 
function in R (Phillips and Elith, 2010; Appendix S2). The slope and the intercept of this 
regression indicate the calibration and the bias of the model, respectively (Phillips and Elith, 
2010). In addition, we calculated the point biserial correlation be-tween predicted and 
observed values, which is sensitive to both discrimination and calibration. For density models, 
we used the Pearson correlation coefficient and the slope and intercept of a major axis 
regression of observed over predicted values to evaluate the bias and consistency of model 
predictions (Pineiro et al., 2008; Potts and Elith, 2006). 
 
 
2.6. Identification of priority areas for conservation of Balearic Shearwaters 
 
To identify priority areas for conservation of Balearic Shearwaters along the W Iberian coast, 
we used our predicted probabilities of occurrence and the spatial prioritization algorithm 
‘Zonation’ (Moilanen, 2007; Moilanen et al., 2005), which has been used successfully in large-
scale marine applications (Leathwick et al., 2008). The ‘Zonation’ algorithm ranks areas 
according to their priority for conservation and is thus ideally suited for conservation planning. 



The ranking is achieved by sequentially removing grid cells from the study area that have low 
predicted probabilities of occurrence, and thus the lowest conservation value. The sequential 
removal also considers proximity of cells to areas of high conservation priority and thus results 
in a spatially constrained set of priority areas most relevant for conservation (Moilanen, 2007; 
Moilanen et al., 2005). The approach is designed for the use with multiple species, and marine 
reserve designation generally re-quires consideration of multiple species (Ainley et al., 2009; 
Nur et al., 2011). Here, we only had predicted probabilities of distribution for one species, but 
we used the predicted distribution in each of our 15 periods (three seasons in each of 5 years) 
analogous to identifying priority areas for multiple species. 
 
We used a simple core-area prioritization in Zonation 2.0 to guarantee the retention of high-
quality areas identified in any particular season. We ran the algorithm without boundary quality 
penalties and a boundary length penalty of 0.1 to retain fewer contiguous areas rather than 
many small dissociated cells which would be impractical to designate as protected areas. We 
then compared the most important 10% of the study area retained by the prioritisation 
algorithm to existing IBAs in Portugal (Ramírez et al., 2008) and Spain (Arcos et al., 2009). The 
IBAs in Portugal were delineated based on a subset of the data used here, whereas the IBAs in 
Spain were delineated based on independent data and thus provided a test of the performance 
of our models. 
 
3. Results 
 
3.1. At-sea surveys 
 
We observed 5737 Balearic Shearwaters in 8174 grid cells that were surveyed over the 5 years 
of study (Fig. 1). On average, 0.7 (±9.8 s.d.) individuals were recorded per km2 of survey effort, 
but in 91% of grid cells no Balearic Shearwaters were observed. In a further 8% of grid cells only 
1–10 birds were observed, and congregations of >100 Balearic Shearwaters were observed on 
only six occasions throughout the study period (0.07% of surveyed grid cells). 



 
 
Fig. 1. General map of the study region showing the number of Balearic Shearwaters observed 
during shipboard surveys between 2005 and 2009. Polygons delimit marine important bird 
areas identified for Balearic Shearwaters (Ramírez et al., 2008; Arcos et al., 2009). Dashed 
contour line indicates the edge of the continental shelf (500 m depth contour). Data from the 
dark grey shaded area served as test data to evaluate the predictive models. 
 
3.2. Performance of distribution models 
 
All five modelling techniques had a reasonable ability to dis-criminate between areas where 
Balearic Shearwaters were present and absent (all AUC > 0.75, Tables 1 and S3). We found little 
spatial autocorrelation in model residuals for all models (Moran’s I = 0.03 ± 0.05 s.d., Geary’s C 
= 0.97 ± 0.05 s.d.). 
 



For the training data used to construct the models, the machine-learning approaches RF and 
BRT provided the best discrimination between areas of presence and absence (highest AUC, 
Table S3). Maxent was the best-calibrated model, and BRT had the smallest bias. The 
performance of GLM and GAM was acceptable, but poorer than for the machine-learning 
approaches when predicting to the data used for model construction (Table S3). 
 
By contrast, prediction of independent test data was very similar among the five modelling 
techniques, with AUC ranging be-tween 0.76 and 0.81 (Table 1). The correlation between 
predicted presences and observed data also were similar among models (Table 1). The BRT 
model had the poorest calibration and highest bias, while Maxent showed the best calibration 
and the GLM had the lowest bias of the five techniques (Table 1). The ensemble prediction 
showed the best combination of predictive performance and calibration (Table 1). 
 
Table 1 
Model evaluation and calibration statistics of five modelling techniques and an ensemble 
predicting the distribution of Balearic Shearwaters in an independent test area. AUC = area 
under the receiver-operated characteristic curve; COR = point biserial correlation coefficient 
between observed and predicted values; calibration = slope of regression of observed vs. 
predicted values; bias = intercept of regression of observed vs. predicted values. See text for 
description of modelling techniques. 
 

Model AUC COR Calibration Bias 
     

BRT 0.80 0.25 0.03 0.18 

RF 0.81 0.31 0.25 0.09 

GLM 0.78 0.28 0.73 0.02 

GAM 0.76 0.24 0.36 0.07 

MAX 0.77 0.26 0.80 ÿ0.15 

Ensemble 0.80 0.30 0.56 0.02 
     

 
 
3.3. Performance of density models 
 
As with the occurrence models, performance of density models was very different between 
training and independent test data. When evaluated for the training data, RF explained 68% of 
the variation in Balearic Shearwater density, while none of the other models explained >35% of 
the variation (Table S4). The RF model also showed the highest correlation between observed 
and predicted density, while the Poisson GLM and GAM showed the best calibration and lowest 
bias (Table S4). Both GAM and BRT showed relatively high correlation between observed and 
predicted density, but BRT suffered from poor calibration and relatively large bias. The zero-



inflated Poisson and the Poisson GLM explained the least amount of variation (<5%) in the 
density of Balearic Shearwaters in the training data. 
 
None of the models we constructed were able to accurately predict the density of Balearic 
Shearwaters in the independent test data (Fig. 2, Table 2). In this evaluation, the model 
performance depended not only on the density model itself, but also on the predictive ability 
of the occurrence model of the same technique, because predicted density was the product of 
predicted probability of presence and predicted density of Balearic Shearwaters for all models 
except the zero-inflated Poisson model. Neither of the models explained >8% of the variation in 
recorded density data of Balearic Shearwaters, and the predictive performance of all five 
models was similarly poor (Table 2). The parametric models (GLM, GAM, and zero-inflated 
Poisson) had the lowest correlation and explained the least variation. RF had the highest 
correlation, but was the worst calibrated model with very large bias (Table 2). The ensemble 
prediction combined the same correlation as the RF model but with substantially smaller bias. 
In summary, predicting the density of Balearic Shear-waters based on physical and 
oceanographic data alone was highly unreliable outside the breeding season (Fig. 2). 
 
Table 2 
Model calibration statistics of five modelling techniques and an ensemble predicting the density 
(birds/km2) of Balearic Shearwaters in an independent test area. COR = Pearson correlation 
coefficient between observed and predicted values; rho = Spearman’s rank correlation 
coefficient; R2, calibration, and bias = coefficient of determination, slope, and intercept of 
regression of log-transformed observed vs. log-transformed predicted values, respectively. See 
text for description of modelling techniques. 
 

 

 

Model COR Rho R2 Calibration Bias 
      

BRT 0.12 0.26 0.08 10.5 ÿ0.5 

RF 0.14 0.25 0.06 14.8 ÿ7.7 

ZIP 0.09 0.17 0.02 6.7 ÿ0.5 

GLM 0.03 0.17 0.02 5.1 ÿ2.3 

GAM 0.01 0.17 0.02 0.3 ÿ11.7 

Ensemble 0.13 0.25 0.07 14.4 ÿ0.3 
      



 
 
Fig. 2. Relationship between observed and predicted density of Balearic Shearwaters in 
independent test data along the coast of Portugal. BRT: boosted regression trees; RF: Random 
Forest; ZIP: zero-inflated poisson GLM; POiS: poisson GLM; GAM: generalised additive model; 
Ensemble: ensemble prediction weighting different models based on the correlation between 
observed and predicted data. Note that densities were log transformed to enhance display. 
 
3.4. Priority areas for conservation of Balearic Shearwaters 
 
Balearic Shearwater distribution varied among seasons, and seasonal differences were most 
prominent in the Gulf of Cádiz, with higher predicted probabilities in autumn than in summer 
(Figs. 3 and 4). Despite their similar performance criteria, the five techniques predicted 



different distributions of Balearic Shearwaters over the 5 years of our study. Consequently, the 
areas identified as highest conservation priority for Balearic Shearwaters also differed among 
techniques (Fig. 5). The areas north of the Spanish–Portuguese border, around Porto, Figuera 
da Foz, and in the Gulf of Cádiz (Spain) were consistently retained in the most important 10% of 
the study area. Three of these areas have been identified as marine IBAs by Portugal and Spain 
(Fig. 1), but an additional area around Porto has not been previously identified as IBA. 
 
The GLM was the only method that identified most of the Spanish IBA‘Entorno marino de las 
Rías Baixas’ as an area of highest priority for conservation, but in turn considered the two 
Portuguese IBAs of much lower priority. 
 

 



Fig. 3. Predicted distribution of Balearic Shearwater during summer (May–August) 2005–2009 
along the coast of southwest Iberia based on five different distribution models and an ensemble 
prediction across all five models. BRT: boosted regression trees, RF: Random Forest, GLM: 
generalised linear model, GAM: generalised additive model, MaxEnt: maximum entropy, 
Ensemble: ensemble prediction across all five models. 

 
Fig. 4. Predicted distribution of Balearic Shearwater during autumn (September–December) 
2005–2009 along the coast of southwest Iberia based on five different distribution models and 
an ensemble prediction across all five models. BRT: boosted regression trees, RF: Random 
Forest, GLM: generalised linear model, GAM: generalised additive model, MaxEnt: maximum 
entropy, Ensemble: ensemble prediction across all five models. 
 



 
 
 



Fig. 5. Ranking of marine areas along the coast of southwest Iberia for the conservation of 
Balearic Shearwaters based on five different distribution models and an ensemble prediction 
across all five models. BRT: boosted regression trees, RF: Random Forest, GLM: generalised 
linear model, GAM: generalised additive model, MaxEnt: maximum entropy, Ensemble: 
ensemble prediction across all five models. Areas were identified using the ‘Zonation’ 
algorithm, and the colour of shading reflects the priority for conservation (in % of total study 
area). 
 
4. Discussion 
 
4.1. Utility of models to identify marine IBAs 
 
Our study shows that the choice of modelling method may influ-ence the identification of 
marine areas for the protection of seabirds. None of the five techniques tested provided 
superior predictions in all performance criteria, a finding that is consistent with other model 
comparison studies (Elith and Graham, 2009; Segurado and Araú-jo, 2004; Syphard and 
Franklin, 2009). Despite similar predictive performance, the nature of predicted distributions 
can vary due to different emphasis on and modelled relationships with environ-mental 
variables (Elith and Graham, 2009; Ready et al., 2010). In our study, for example, the Maxent 
and the GLM model had similar predictive performance (Table 1), but would have selected very 
different areas for the conservation of Balearic Shearwaters (Fig. 5). 
 
Because of the uncertainty in choosing a single appropriate technique to identify important 
areas for seabirds, using a variety of different models and combining them in an ensemble can 
improve overall prediction (Araújo and New, 2007; Coetzee et al., 2009; Jones-Farrand et al., 
2011; Marmion et al., 2009). Our ensemble of five techniques successfully predicted areas of 
impor-tance for Balearic Shearwaters, including one that had been identified in a different IBA 
identification project (Arcos et al., 2009). The Spanish IBA ‘Entorno marino de las Rías Baixas’ 
lies north of the area covered by ship surveys in this project, and thus indicates a reliable 
prediction of our models to an area that extended beyond the sampling region. Additional 
independent evidence of the importance and validity of the areas we identified is provided by 
the recent tracking of Balearic Shearwaters with geolocators and satellite transmitters (T. 
Guilford & M. Louzao, unpubl. data). In fact, most of the 29 birds tracked with geolocators used 
at least one of the important areas mentioned above during the non-breeding period and the 
more fine scale satellite-based tracking data highlights the importance of the IBA Figueira da 
Foz for a non-breeder. We are therefore confident that the ensemble predictions are robust 
and we recommend that conservation managers rely on a suite of modelling techniques when 
trying to identify marine protected areas. Due to recent advances in freely available software, 
computational challenges for ensemble predictions have decreased considerably (Thuiller, 
2003; Thuiller et al., 2009). 
 
In contrast to the occurrence models, our density models performed poorly on independent 
test data (Fig. 2), and we do not recommend their use to estimate whether an area meets the 



numerical threshold to qualify for a marine IBA (BirdLife Interna-tional, 2010b). The 
identification of marine IBAs may benefit from a two-step approach, where the spatial 
distribution models are used to delineate potential areas where a species occurs regularly, and 
specific surveys are then conducted in a second step to assess the abundance of target species 
in those areas. 
 
4.2. Important areas for the conservation of Balearic Shearwaters 
 
Our modelling exercise indicated that Balearic Shearwaters use slightly different regions during 
their northward (May–July) and southward migration (September–December). During summer, 
shearwaters were present in four marine areas over the continental shelf north of Lisbon 
(Porto, Figuera da Foz, south of the Berlengas Islands and north of the Spanish–Portuguese 
border), whereas the Gulf of Cádiz was only used during the southward migration in autumn. 
The majority of Balearic Shearwaters migrate to the North-East Atlantic before moulting, but 
some individuals might also moult and stay from June to October over the northern Portuguese 
continental shelf and in the IBA ‘Rías Baixas’ (Arcos et al., 2009; Mouriño et al., 2003). During 
autumn migration, birds might forage in additional, seasonally highly productive areas such as 
the Gulf of Cádiz (García Lafuente and Ruiz, 2007). Our results confirm the high importance of 
the IBAs ‘Figueira da Foz’, ‘Berlengas’ and ‘Rías Baixas’ (Fig. 1), but suggest that in addition the 
near-shore waters around Porto are regularly used by Balearic Shearwaters both in summer 
and in autumn. 
 
Low adult survival rates at sea are the main cause for the de-cline of the Balearic Shearwater 
population (Louzao et al., 2006b; Oro et al., 2004), and areas that are reliably used by the 
species during moult and on migration require legal protection to reduce mortality. Our study 
suggests that the Atlantic coast of Portugal north of Lisbon and extending into Spain serves as 
an important migratory stopover and/or moulting habitat for Balearic Shearwaters, where 
protected areas that reduce accidental mortality may benefit a significant proportion of the 
species. Further surveys to assess whether the number of Balearic Shearwaters in the near-
shore waters around Porto meet marine IBA criteria (BirdLife Inter-national, 2010b) would be 
needed given the socioeconomic costs that may be incurred when marine areas are created for 
the conservation of seabirds (Adams et al., 2011; Balmford et al., 2004). In addition, the 
designation of marine reserves would benefit from information on the spatial distribution of 
multiple species (Ainley et al., 2009; Nur et al., 2011). We therefore recommend integrating the 
information presented here with similar data for other species, and other stakeholder interests 
to designate effective marine protected areas for seabirds (Smith et al., 2009). 
 
4.3. Advancing seabird distribution models 
 
The vast majority of spatial distribution model literature pre-dicts the distribution of stationary 
plants or animals in more temporally stable environments. Novel approaches are emerging to 
model mobile, migratory, or range-shifting species (Elith et al., 2010; Fink et al., 2010; Hothorn 
et al., 2011; Zurell et al., 2009), but significant challenges still exist in the marine environment, 



where conditions at a given location are constantly changing (Tremblay et al., 2009; Zipkin et 
al., 2010). Several unresolved is-sues exist in seabird distribution models regarding 
heterogeneity in spatiotemporal scales that may be informed by advances in other 
environments (Robinson et al., 2011; Schröder, 2008). For example, what time lag exists 
between the easily measured proxys of primary productivity (e.g., sea surface temperature and 
chlorophyll a concentration) and foraging conditions that actually attract seabirds? Similarly, is 
it more useful to model the distribution of pelagic birds separately for each year, using 
contemporary local environmental measurements, or will predictions that pool observations 
over several years and use average environmental conditions at a given location provide more 
robust predictions (Tuanmu et al., 2011)? There may be no single best approach to these issues, 
and simulations would be useful to thoroughly test which combination of temporal aggregation 
and resolution is most reliable for seabirds at sea. 
 
Similar questions exist regarding the choice of environmental predictor variables and modelling 
techniques. We did not examine the contribution of different variables in this manuscript, and 
re-lied on variables commonly used in seabird studies (Tremblay et al., 2009; Wakefield et al., 
2009). Although it is well known that different modelling techniques will provide different 
predictions of the distribution of a species, the causes for these differences are still poorly 
understood. The most likely reason for differences in the mapped predictions for occurrence 
between models are differences in the functions fitted by each technique (Elith and Graham, 
2009). Different predictor variables and varying levels of complexities in the fitted functions 
(Figs. S1–S17) are likely to explain differences between the machine-learning and the 
parametric modelling approaches in our study (Dormann et al., 2008; Syphard and Franklin, 
2009), but a detailed analysis of the specific model differences is beyond the scope of this 
contribution. 
 
The machine-learning methods RF, BRT, and Maxent provided excellent discrimination between 
areas where Balearic Shearwaters were present and absent. However, when used on spatially 
independent test data, the predictive performance of those three models was only marginally 
better than GLM and GAM approaches, suggesting that the machine learning methods suffer 
proportionally more from over fitting than parametric models (Dormann et al., 2008; Hastie et 
al., 2001). A similar pattern emerged for the density models, where RF showed good 
performance on the training data, but equally poor performance as other models when 
predicting shearwater density in independent test data. 
 
Many seabird surveys yield only brief temporal windows into the spatial distribution of 
seabirds, and many recorded absences may therefore be considered as false absences, because 
seabirds may have been present in that area at a time when the surveyors were not. Such 
methodological absences reduce the power of spatial distribution and abundance models (Lobo 
et al., 2010; Martin et al., 2005), and create uncertainty when models are evaluated. Therefore, 
Lobo et al. (2010) suggested removing absences that are identical or close to observed 
presences in environmental space from the training data to remove the potential effect of false 
absences. 
 



False absences may also have contributed to the poor performance of our density models, as 
the hurdle model approach that we employed assumes that zero observations reflect true 
absence (Risk et al., 2011). However, even when predicted to only the presence fraction of 
independent test data our density models showed weak correlation with observed densities. 
More sophisticated models that simultaneously model the observation and process uncertainty 
and can thus account for imperfect detection may pro-vide better estimates of spatial 
abundance patterns in the future (Dail and Madsen, 2011; Hutchinson et al., 2011; Warton and 
Shepherd, 2010). 
 
 
Acknowledgements 
 
Data collection for this project started with LIFE 04NAT/PT/ 000213 funding by the European 
Union, and we thank IPIMAR (Instituto de Investigação das Pescas e do Mar) and the Instituto 
Hidrográfico Português for subsequent support in data collection. We thank all research 
institutions that allowed observers onboard the survey vessels, and all observers and 
volunteers of the LIFE project. M.L. was funded by a Marie Curie Individual Fellowship (PIEF-GA-
2008-220063). G. Buchanan, A. Marcer and R. Hijmans assisted with maximum entropy 
modelling. The manuscript benefited from thoughtful comments by B. Best, G. Humphries, J. M. 
Arcos, R. A. Ronconi, E. Owen, N. Nur, and two anonymous reviewers. 
 
 
Appendix A. Supplementary material 
 
Supplementary data associated with this article can be found, in the online version, at 
doi:10.1016/j.biocon.2011.11.013. 

 
 
  

References 
 
Adams, V.M., Mills, M., Jupiter, S.D., Pressey, R.L., 2011. Improving social acceptability of 
marine protected area networks: a method for estimating opportunity costs to multiple gear 
types in both fished and currently unfished areas. Biological Conservation 144, 350–361. 
 
Ainley, D.G., Dugger, K.D., Ford, R.G., Pierce, S.D., Reese, D.C., Brodeur, R.D., Tynan, C.T., Barth, 
J.A., 2009. Association of predators and prey at frontal features in the California current: 
competition, facilitation, and co-occurrence. Marine Ecology Progress Series 389, 271–294. 
 
Araújo, M.B., Guisan, A., 2006. Five (or so) challenges for species distribution modelling. Journal 
of Biogeography 33, 1677–1688. 
 
Araújo, M.B., New, M., 2007. Ensemble forecasting of species distributions. Trends in Ecology & 
Evolution 22, 42–47. 



 
Archer, K.J., Kimes, R.V., 2008. Empirical characterization of random forest variable importance 
measures. Computational Statistics and Data Analysis 52, 2249– 2260. 
 
Arcos, J.M., Bécares, J., Rodríguez, B., Ruiz, A., 2009. Áreas Importantes para la Conservación de 
las Aves marinas en España. Sociedad Española de Ornitología (SEO/BirdLife), Madrid, Spain. 
Austin, M., 2007. Species distribution models and ecological theory: a critical assessment and 
some possible new approaches. Ecological Modelling 200, 1– 19. 
 
Balmford, A., Gravestock, P., Hockley, N., McClean, C.J., Roberts, C.M., 2004. The worldwide 
costs of marine protected areas. Proceedings of the National Academy of Sciences of the United 
States of America 101, 9694–9697. 
 
Bartumeus, F., Giuggioli, L., Louzao, M., Bretagnolle, V., Oro, D., Levin, S.A., 2010. 
 
Fishery discards impact on seabird movement patterns at regional scales. Current Biology 20, 
215–222. 
 
BirdLife International, 2010a. Marine IBAs in the European Union. BirdLife International, 
Brussels, Belgium. 
 
BirdLife International, 2010b. Marine Important Bird Areas Toolkit: Standardised Techniques for 
Identifying Priority Sites for the Conservation of Seabirds At-Sea. BirdLife International, 
Cambridge, UK. 
 
Breiman, L., 2001. Random forests. Machine Learning 45, 5–32. 
 
Brooke, M., 2004. Albatrosses and Petrels Across the World. Oxford University Press, USA. 
 
Camphuysen, K.C.J., Garthe, S., 2004. Recording foraging seabirds at sea: standardised 
recording and coding of foraging behaviour and multi-species foraging associations. Atlantic 
Seabirds 6, 1–32. 
 
Coetzee, B.W.T., Robertson, M.P., Erasmus, B.F.N., van Rensburg, B.J., Thuiller, W., 2009. 
Ensemble models predict Important Bird Areas in southern Africa will become less effective for 
conserving endemic birds under climate change. Global Ecology and Biogeography 18, 701–710. 
 
Croxall, J., Rothery, P., 1991. Population regulation of seabirds: implications of their 
demography for conservation. In: Perrins, C.M., Lebreton, J.D., Hirons, G.M. (Eds.), Bird 
Population Studies, Relevance to Conservation and Management. Oxford University Press, 
Oxford, UK, pp. 272–296. 
 
Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., 2007. 
Random forests for classification in ecology. Ecology 88, 2783–2792. 



 
Dail, D., Madsen, L., 2011. Models for estimating abundance from repeated counts of an open 
metapopulation. Biometrics 67, 577–578. 
 
Dormann, C.F., 2007. Effects of incorporating spatial autocorrelation into the analysis of species 
distribution data. Global Ecology and Biogeography 16, 129– 138. 
 
Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., 
Hirzel, A., Jetz, W., Kissling, W.D., 2007. Methods to account for spatial autocorrelation in the 
analysis of species distributional data: a review. Ecography 30, 609–628. 
 
Dormann, C.F., Purschke, O., Marquez, J.R.G., Lautenbach, S., Schröder, B., 2008. Components 
of uncertainty in species distribution analysis: a case study of the Great Grey Shrike. Ecology 89, 
3371–3386. 
 
Elith, J., Graham, C.H., 2009. Do they? How do they? WHY do they differ? On finding reasons for 
differing performances of species distribution models. Ecography 32, 66–77. 
 
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., 
Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., 
Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, 
K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S., Zimmermann, N.E., 
2006. Novel methods improve prediction of species’ distributions from occurrence data. 
Ecography 29, 129– 151. 
 
Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species. Methods in 
Ecology and Evolution 1, 330–342. 
 
Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and 
prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 
677–697. 
 
Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. Journal of 
Animal Ecology 77, 802–813. 
 
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation 
of MaxEnt for ecologists. Diversity and Distributions 17, 43–57. 
 
Fink, D., Hochachka, W.M., Zuckerberg, B., Winkler, D.W., Shaby, B., Munson, M.A., Hooker, G., 
Riedewald, M., Sheldon, D., Kelling, S., 2010. Spatiotemporal exploratory models for broad-
scale survey data. Ecological Applications 20, 2131–2147. 
 
Friedman, J.H., 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis 38, 
367–378. 



 
Game, E.T., Grantham, H.S., Hobday, A.J., Pressey, R.L., Lombard, A.T., Beckley, L.E., Gjerde, K., 
Bustamante, R., Possingham, H.P., Richardson, A.J., 2009. Pelagic protected areas: the missing 
dimension in ocean conservation. Trends in Ecology & Evolution 24, 360–369. 
 
García Lafuente, J., Ruiz, J., 2007. The Gulf of Cádiz pelagic ecosystem: a review. Progress in 
Oceanography 74, 228–251. 
 
Geary, R.C., 1954. The contiguity ratio and statistical mapping. Incorporated Statistician 5, 115–
146. 
 
Grecian, W.J., Witt, M.J., Attrill, M.J., Bearhop, S., Godley, B.J., Grémillet, D., Hamer, K.C., 
Votier, S.C., 2012. A novel projection technique to identify important at-sea areas for seabird 
conservation: an example using Northern gannets breeding in the North East Atlantic. Biological 
Conservation this issue. 
 
Guilford, T., Meade, J., Willis, J., Phillips, R.A., Boyle, D., Roberts, S., Collett, M., Freeman, R., 
Perrins, C.M., 2009. Migration and stopover in a small pelagic seabird, the Manx shearwater 
Puffinus puffinus: insights from machine learning. Proceedings of the Royal Society B 276, 
1215–1223. 
 
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., 
Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, 
M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008. A global map of human impact on 
marine ecosystems. Science 319, 948–952. 
 
Hastie, T., Tibshirani, R., Friedman, J.H., 2001. The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction. Springer, New York, NJ. 
 
Hegel, T.M., Cushman, S.A., Evans, J., Huettmann, F., 2010. Current state of the art for statistical 
modelling of species distributions. In: Cushman, S., Huettmann, F. (Eds.), Spatial Complexity, 
Informatics, and Wildlife Conservation. Springer, Tokyo, pp. 273–311. 
 
Hothorn, T., Müller, J., Schröder, B., Kneib, T., Brandl, R., 2011. Decomposing environmental, 
spatial, and spatiotemporal components of species distributions. Ecological Monographs 81, 
329–347. 
 
Huettmann, F., Diamond, A., 2006. Large-scale effects on the spatial distribution of seabirds in 
the Northwest Atlantic. Landscape Ecology 21, 1089–1108. 
 
Huettmann, F., Diamond, A.W., 2001. Seabird colony locations and environmental 
determination of seabird distribution: a spatially explicit breeding seabird model for the 
Northwest Atlantic. Ecological Modelling 141, 261–298. 



Hutchinson, R.A., Liu, L.-P., Dietterich, T.G., 2011. Incorporating boosted regression trees into 
ecological latent variable models. In: 25th AAAI Conference on Artificial Intelligence. 
Association for the Advancement of Artificial Intelligence, San Francisco, CA. 
 
Jones-Farrand, D.T., Fearer, T.M., Thogmartin, W.E., Iii, F.R.T., Nelson, M.D., Tirpak, J.M., 2011. 
Comparison of statistical and theoretical habitat models for conservation planning: the benefit 
of ensemble prediction. Ecological Applications 21, 2269–2282. 
 
Leathwick, J., Moilanen, A., Francis, M., Elith, J., Taylor, P., Julian, K., Hastie, T., Duffy, C., 2008. 
Novel methods for the design and evaluation of marine protected areas in offshore waters. 
Conservation Letters 1, 91–102. 
 
Lichstein, J., Simons, T., Shriner, S., Franzreb, K., 2002. Spatial autocorrelation and 
autoregressive models in ecology. Ecological Monographs 72, 445–463. 
 
Lobo, J.M., Jiménez-Valverde, A., Hortal, J., 2010. The uncertain nature of absences and their 
importance in species distribution modelling. Ecography 33, 103–114. 
 
Louzao, M., Becares, J., Rodriguez, B., Hyrenbach, K.D., Ruiz, A., Arcos, J.M., 2009. Combining 
vessel-based surveys and tracking data to identify key marine areas for seabirds. Marine 
Ecology Progress Series 391, 183–197. 
 
Louzao, M., Hyrenbach, K., Arcos, J., Abelló, P., de Sola, L., Oro, D., 2006a. Oceanographic 
habitat of an endangered Mediterranean procellariiform: implications for marine protected 
areas. Ecological Applications 16, 1683–1695. 
 
Louzao, M., Igual, J., McMinn, M., Aguilar, J., Triay, R., Oro, D., 2006b. Small pelagic fish, 
trawling discards and breeding performance of the critically endangered Balearic shearwater: 
improving conservation diagnosis. Marine Ecology Progress Series 318, 247–254. 
 
Lovvorn, J.R., Grebmeier, J.M., Cooper, L.W., Bump, J.K., Richman, S.E., 2009. Modeling marine 
protected areas for threatened eiders in a climatically changing Bering Sea. Ecological 
Applications 19, 1596–1613. 
 
Marmion,  M.,  Parviainen,  M.,  Luoto,  M.,  Heikkinen,  R.K.,  Thuiller,  W.,  2009. Evaluation of 
consensus methods in predictive species distribution modelling. Diversity and Distributions 15, 
59–69. 
 
Martin, T.G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-Choy, S.J., Tyre, A.J., 
Possingham, H.P., 2005. Zero tolerance ecology: improving ecological inference by modelling 
the source of zero observations. Ecology Letters 8, 1235–1246. 
 
McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models. Chapman and Hall, Washington, 
DC, USA. 



 
Millar, R.B., 2009. Comparison of hierarchical Bayesian models for overdispersed count data 
using DIC and Bayes’ factors. Biometrics 65, 962–969. 
 
Miller, P., 2009. Composite front maps for improved visibility of dynamic sea-surface features 
on cloudy SeaWiFS and AVHRR data. Journal of Marine Systems 78, 327–336. 
 
Moilanen, A., 2007. Landscape zonation, benefit functions and target-based planning: unifying 
reserve selection strategies. Biological Conservation 134, 571–579. 
 
Moilanen, A., Franco, A.M.A., Early, R.I., Fox, R., Wintle, B., Thomas, C.D., 2005. Prioritizing 
multiple-use landscapes for conservation: methods for large multi-species planning problems. 
Proceedings of the Royal Society B: Biological Sciences 272, 1885–1891. 
 
Moran, P.A.P., 1950. Notes on continuous stochastic phenomena. Biometrika 37, 17. Mouriño, 
J., Arcos, F., Salvadores, R., Sandoval, A., Vidal, C., 2003. Status of the Balearic shearwater 
(Puffinus mauretanicus) on Galician coast (NW Iberian Peninsula). Scientia Marina 67, 135–142. 
 
Nur, N., Jahncke, J., Herzog, M.P., Howar, J., Hyrenbach, K.D., Zamon, J.E., Ainley, D.G., Wiens, 
J.A., Morgan, K., Ballance, L.T., Stralberg, D., 2011. Where the wild things are: predicting 
hotspots of seabird aggregations in the California current system. Ecological Applications 21, 
2241–2257. 
 
Oppel, S., Dickson, D.L., Powell, A.N., 2009. International importance of the eastern Chukchi Sea 
as a staging area for migrating King Eiders. Polar Biology 32, 775– 783. 
 
Oro, D., Aguilar, J.S., Igual, J.M., Louzao, M., 2004. Modelling demography and extinction risk in 
the endangered Balearic shearwater. Biological Conservation 116, 93–102. 
 
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species 
geographic distributions. Ecological Modelling 190, 231–259. 
 
Phillips, S.J., Dudik, M., 2008. Modeling of species distributions with Maxent: new extensions 
and a comprehensive evaluation. Ecography 31, 161–175. 
 
Phillips, S.J., Elith, J., 2010. POC plots: calibrating species distribution models with presence-only 
data. Ecology 91, 2476–2484. 
 
Piatt, J.F., Wetzel, J., Bell, K., DeGange, A.R., Balogh, G.R., Drew, G.S., Geernaert, T., Ladd, C., 
Byrd, G.V., 2006. Predictable hotspots and foraging habitat of the endangered short-tailed 
albatross (Phoebastria albatrus) in the North Pacific: Implications for conservation. Deep Sea 
Research Part II 53, 387–398. 
 



Pineiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., 2008. How to evaluate models: 
observed vs. predicted or predicted vs. observed? Ecological Modelling 216, 316–322. 
Potts, J.M., Elith, J., 2006. Comparing species abundance models. Ecological Modelling 199, 
153–163. 
 
Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer classification and regression tree techniques: 
bagging and random forests for ecological prediction. Ecosystems 9, 181–199. 
 
Ramírez, I., Geraldes, P., Meirinho, A., Amorim, P., Paiva, V.H., 2008. Areas Importantes Para as 
Aves Marinhas em Portugal. Sociedade Portuguesa para o Estudo das Aves, Lisbon, Portugal. 
Ready, J., Kaschner, K., South, A.B., Eastwood, P.D., Rees, T., Rius, J., Agbayani, E., Kullander, S., 
Froese, R., 2010. Predicting the distributions of marine organisms at the global scale. Ecological 
Modelling 221, 467–478. 
 
Reineking, B., Schröder, B., 2006. Constrain to perform: regularization of habitat models. 
Ecological Modelling 193, 675–690. 
 
Risk, B.B., de Valpine, P., Beissinger, S.R., 2011. A robust-design formulation of the incidence 
function model of metapopulation dynamics applied to two species of rails. Ecology 92, 462–
474. 
 
Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E., Possingham, H.P., Richardson, 
A.J., 2011. Pushing the limits in marine species distribution modelling: lessons from the land 
present challenges and opportunities. Global Ecology and Biogeography 20, 789–802. 
 
Ronconi, R.A., Burger, A.E., 2009. Estimating seabird densities from vessel transects: distance 
sampling and implications for strip transects. Aquatic Biology 4, 297– 309. 
 
Ruiz, A., Martí, R. (Eds.), 2004. La pardela Balear. SEO/BirdLife-Conselleria de Medi Ambient del 
Govern de les Iles Balears, Madrid, Spain. 
 
Schröder, B., 2008. Challenges of species distribution modeling belowground. Journal of Plant 
Nutrition and Soil Science 171, 325–337. 
 
Segurado, P., Araújo, M.B., 2004. An evaluation of methods for modelling species distributions. 
Journal of Biogeography 31, 1555–1568. 
 
Sileshi, G., Hailu, G., Nyadzi, G.I., 2009. Traditional occupancy-abundance models are 
inadequate for zero-inflated ecological count data. Ecological Modelling 220, 1764–1775. 
 
Smith, R.J., Eastwood, P.D., Ota, Y., Rogers, S.I., 2009. Developing best practice for using 
Marxan to locate marine protected areas in European waters. ICES Journal of Marine Science 
66, 188–194. 



Syphard, A.D., Franklin, J., 2009. Differences in spatial predictions among species distribution 
modeling methods vary with species traits and environmental predictors. Ecography 32, 907–
918. 
 
Tasker, M.L., Jones, P.H., Dixon, T., Blake, B.F., 1984. Counting seabirds at sea from ships: a 
review of methods employed and a suggestion for a standardized approach. Auk 101, 567–577. 
 
Thaxter, C., Lascelles, B., Sugar, K., Cook, A.S., Roos, S., Bolton, M., Langston, R., Burton, N.H., 
2012. Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected 
Areas. Biological Conservation, this issue. 
 
Thuiller, W., 2003. BIOMOD – optimizing predictions of species distributions and projecting 
potential future shifts under global change. Global Change Biology 9, 1353–1362. 
 
Thuiller, W., Lafourcade, B., Engler, R., Araujo, M.B., 2009. BIOMOD – a platform for ensemble 
forecasting of species distributions. Ecography 32, 369–373. 
 
Tremblay, Y., Bertrand, S., Henry, R.W., Kappes, M.A., Costa, D.P., Shaffer, S.A., 2009. Analytical 
approaches to investigating seabird-environment interactions: a review. Marine Ecology 
Progress Series 391, 153–163. 
 
Tuanmu, M.-N., Viña, A., Roloff, G.J., Liu, W., Ouyang, Z., Zhang, H., Liu, J., 2011. Temporal 
transferability of wildlife habitat models: implications for habitat monitoring. Journal of 
Biogeography 38, 1510–1523. 
 
Wakefield, E.D., Phillips, R.A., Matthiopoulos, J., 2009. Quantifying habitat use and preferences 
of pelagic seabirds using individual movement data: a review. Marine Ecology Progress Series 
391, 165–182. 
 
Warton, D.I., 2005. Many zeros does not mean zero inflation: comparing the goodness-of-fit of 
parametric models to multivariate abundance data. Environmetrics 16, 275–289. 
 
Warton, D.I., Shepherd, L.C., 2010. Poisson point process models solve the ‘‘pseudo-absence 
problem’’ for presence-only data in ecology. Annals of Applied Statistics. 
 
Weimerskirch, H., 2002. Seabird demography and its relationship with the marine environment. 
In: Schreiber, E.A., Burger, J. (Eds.), Biology of Marine Birds. CRC Press, Boca Raton, Florida, pp. 
115–135. 
 
Wenger, S.J., Freeman, M.C., 2008. Estimating species occurrence, abundance, and detection 
probability using zero-inflated distributions. Ecology 89, 2953–2959. 
 



Wood, S.N., Augustin, N.H., 2002. GAMs with integrated model selection using penalized 
regression splines and applications to environmental modelling. Ecological Modelling 157, 157–
177. 
 
Yen, P.P.W., Huettmann, F., Cooke, F., 2004. A large-scale model for the at-sea distribution and 
abundance of Marbled Murrelets (Brachyramphus marmoratus) during the breeding season in 
coastal British Columbia, Canada. Ecological Modelling 171, 395–413. 
 
Yésou, P., 2003. Recent changes in the summer distribution of the Balearic shearwater Puffinus 
mauretanicus off western France. Scientia Marina, 67. 
 
Zipkin, E., Gardner, B., Gilbert, A., O’Connell, A., Royle, J., Silverman, E., 2010. Distribution 
patterns of wintering sea ducks in relation to the North Atlantic Oscillation and local 
environmental characteristics. Oecologia 163, 893–902. 
 
Zurell, D., Jeltsch, F., Dormann, C.F., Schröder, B., 2009. Static species distribution models in 
dynamically changing systems: how good can predictions really be? Ecography 32, 733–744. 
 


