
1.  Introduction
Sustaining long-term ocean observations to develop climate-quality observational records is crucial for un-
derstanding the ocean's role in climate and for evaluating climate model simulations (National Academies 
of Sciences, Engineering, and Medicine, 2017). Yet, ocean observing faces multiple challenges: complex 
deployment operations in frequently rough weather (or ice) conditions, limited instrument lifetime due to 
corrosive and high-pressure environments, and the necessity of adequate spatial and temporal sampling. 
The high cost and logistical challenges call for deliberate, quantitative approaches. Here, we leverage ad-
joint modeling and Hessian uncertainty quantification (UQ) within the ECCO (Estimating the Circulation 
and Climate of the Ocean) framework to explore a new design strategy for ocean climate observing sys-
tems. This approach has two distinguishing features, which, taken together, foster collaboration and system 
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Hessian UQ unifies three design concepts. (1) An observing system reduces uncertainty in a target QoI 
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are exposed by the Hessian eigenvector patterns of the model-data misfit function. (2) Orthogonality of 
the Hessian eigenvectors rigorously accounts for redundancy between distinct members of the observing 
system. (3) The Hessian eigenvalues determine the overall effectiveness of the observing system, and are 
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Plain Language Summary  Ocean observing faces multiple challenges: high instrument cost, 
difficult deployment logistics via ships, harsh environments, and the necessity to sustain observations 
over long periods of time. Since oceanographers cannot measure the ocean everywhere and at all times, 
they have to carefully choose the location of their instruments. In an ideal scenario, measurements 
from a small number of instruments provide maximum information about important ocean metrics, 
such as poleward ocean heat transport or regional heat content. This paper presents a new method for 
planning optimal instrument configurations, by combining computer simulations of the global ocean 
with the mathematics of uncertainty quantification (UQ). As an example, we show that North Atlantic 
temperature measurements taken below the ocean surface do not only tell us about the ocean properties 
at the instrument locations themselves, but reduce uncertainty in regions hundreds to thousands of 
kilometers away. We can therefore use existing ocean observations to extract more information about the 
ocean than previously appreciated. Our method helps to plan informative observing networks that are 
complementary to the existing observational database.
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co-design within the oceanographic community. First, it gives insights into the physical mechanisms that 
govern optimal design strategies; and second, it quantitatively assesses redundancy and optimality of an 
(existing or future) observing system.

To place our technique into context, we briefly recall existing formal approaches to observing system design. 
Observing System [Simulation] Experiments (OS[S]Es; Fujii et  al.,  2019) are the most common compu-
tational tools in oceanography to support observing system design (e.g., Balmaseda et al., 2007; Gaspar-
in et al., 2019; Griffa et al., 2006; Halliwell et al., 2017). OSEs are limited to evaluate existing observing 
systems, whereas OSSEs can test the skill of proposed future observing systems. The design strategy to 
be tested in an OSSE has to be specified by the investigator. Once a region is targeted for monitoring, the 
proposed observing system design (to be tested in the OSSE) is typically guided by best available knowledge 
of both local hydrographic properties and local dynamical balances (Hirschi et al., 2003; Li et al., 2017; 
Perez et al., 2011). An example are the Atlantic trans-basin mooring arrays OSNAP (Li et al., 2017), RAPID 
(Hirschi et al., 2003), and SAMBA (Perez et al., 2011), which target monitoring of the meridional overturn-
ing circulation. Key components of each design are western and eastern boundary moorings, which allow 
geostrophic transport estimates across each trans-basin section. Although these local considerations sup-
port practical local monitoring, it is possible that similar constraints could be obtained elsewhere, perhaps 
with an instrument configuration more easily sustained, at reduced cost, or less susceptible to noise. This 
opportunity arises from the appreciation that observed variability at any given location is rarely a purely 
instantaneous response to local forcing. Instead, it is the superposition of phenomena originating in distant 
regions and at distinct times, communicated through the ocean by advection, diffusion and wave propaga-
tion (Heimbach et al., 2011).

Exploring the possibility of remote constraint is essential for truly optimal observing system design. Ad-
joint models have proven valuable for fully mapping the local and remote origins and pathways of varia-
bility in targeted quantities, for example, meridional overturning at given latitudes (Heimbach et al., 2011; 
Köhl, 2005; Pillar et al., 2016; Smith & Heimbach, 2019). Exploiting the rich information exposed by an 
adjoint model, a number of adjoint modeling techniques have previously been used to inform ocean ob-
serving system design, for example adjoint sensitivity (Heimbach et al., 2011; Masuda et al., 2010), observa-
tion sensitivity (Köhl & Stammer, 2004; Moore et al., 2011), and singular vectors (Fujii et al., 2008; Zanna 
et al., 2012). Despite giving valuable insight into where observations may be useful, none of these latter 
techniques provide a measure of redundancy versus complementarity, nor of optimality of an observing 
system. These obstacles are overcome by Hessian UQ: an adjoint-based technique embedded in a varia-
tional data assimilation system. The Hessian matrix (composed of second derivatives) of the cost function 
J captures the curvature of J with respect to the control variables, and allows one to calculate how much 
uncertainty is reduced with any changes applied to the observing system (Thacker, 1989). In contrast to 
the previous adjoint modeling techniques named above, Hessian UQ accounts for data redundancy. It also 
provides a measure of optimality: the more uncertainty an observing system reduces in a defined target 
quantity (on a scale of 0%–100%), the closer it is considered to being optimal for the defined target.

Hessian UQ has been routinely applied in numerical weather prediction (NWP; Leutbecher, 2003) and, 
more broadly, in computational science and engineering (CSE; Bui-Thanh et  al.,  2012), but it has only 
seen limited use in the oceanographic community. Previous studies have applied Hessian UQ after severely 
reducing the dimension of the space of uncertain parameters in an ad-hoc manner (Kaminski et al., 2015; 
Kaminski et  al.,  2018), or in the dual form of “representers” (Bennett,  1985; Moore et  al.,  2017; Zhang 
et al., 2010). These examples have focused on regional ocean settings and on daily to monthly time scales. 
In this study, we take a step toward fully exploiting Hessian UQ to design ocean observing systems that 
are targeted at climate monitoring in a global context. To this aim, we apply Hessian UQ within the global 
ocean state estimation framework of the ECCO consortium (Heimbach et al., 2019), and elucidate oceanic 
teleconnections that communicate observational constraints over basin-scale distances and monthly to in-
terannual time scales.

In ocean climate research, the goal of an observing system is usually to accurately estimate certain quanti-
ties of interest (QoIs): forecasts or climate indices that are difficult or impossible to observe directly. Exam-
ples of QoIs include transports across certain oceanographic passages, ocean heat content near the polar ice 
sheets, regional sea level anomalies, or future sea-ice extent. We therefore focus on the information that an 
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observing system contains about a given QoI, here referred to as the observing system's “proxy potential” for 
the QoI on a scale of 0%–100% (Loose et al., 2020). Proxy potential is defined by way of Hessian UQ, as the 
reduction in QoI uncertainty that would be achieved if the observing system was added to the ocean state 
estimate. Importantly, proxy potential can be assessed not only for existing but also for future observing sys-
tems, because it does not require the actual measurement values of the observations (only their locations, 
times, types, and uncertainties).

Loose et al. (2020) provided interpretations of Hessian UQ and proxy potential for idealized cases, in which 
an observing “system” consists of only a single and noise-free observation. Then, the observation's proxy 
potential for a QoI reflects the degree to which adjustment mechanisms are shared between the observation 
and QoI. In this simple case, proxy potential can be understood as the dynamical analog of statistical corre-
lation (squared) between observation and QoI, with the important distinction that proxy potential accounts 
only for covariability that has dynamical underpinnings. The goal of this study is to leverage Hessian UQ 
to generalize the notion of proxy potential introduced by Loose et al. (2020) in three important ways (Sec-
tion 2): first, by extending this concept from a single observational asset to full observing systems; second, by 
quantifying observational redundancy versus complementarity; and third, by accounting for observational 
noise.

We illustrate the concepts of Hessian UQ and proxy potential in a North Atlantic case study (Section 3). To 
provide a clear understanding of Hessian UQ, our case study focuses on observing systems that are com-
prised of only a few observations. We then discuss how our approach and the dynamical insights obtained 
generalize to the design of full-fledged observing systems, including thousands to millions of observations 
(Section 4).

2.  Uncertainty Quantification and Proxy Potential
2.1.  Ocean State Estimation

Ocean state estimation optimally fits an ocean general circulation model (GCM) to the available observa-
tions in a dynamically and kinematically consistent way. For this, one solves an inverse problem: given an 
observing system (gray box, Figure 1), one adjusts the control vector  1( , , )T

Nu uu  (green box, Figure 1), 
such as to minimize the scalar cost function
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The control variables u1, …, uN (i.e., the elements of the control vector u) are the uncertain input variables 
of the model, and consist not only of initial conditions (as common in NWP), but also of atmospheric 
forcing variables and uncertain model parameters (green box, Figure  1). The function Jmisfit(u) meas-
ures the misfit between the vector of actual observations,  1( , , )T

My yy  (gray box, Figure 1), and the 
vector of simulated observations,  1( ) (Obs ( ), ,Obs ( ))T

MObs u u u  (pink box, Figure 1), given the input 
variables u. The function Jprior(u) penalizes deviations from a first-guess u0 of uncertain inputs. The M × 
M matrix R and N × N matrix B are chosen error covariances, spelling out the assumption that observa-
tional noise and prior uncertainties follow the Gaussian distributions ( , )0 R  and 0( , )u B , respectively 
(Tarantola, 2005).

The solution of the inverse problem is the minimizer of the cost function, umin = minuJ; that is, a choice of 
control variables. The ocean state estimate itself is obtained by running the GCM with inputs umin.

2.2.  Inverse Uncertainty Propagation

To quantify uncertainties in the solution umin of the inverse problem, one propagates observational infor-
mation and uncertainty along path (UQ1; Figure 1). This inverse uncertainty propagation results in the 
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posterior probability distribution of the control variables, given the observations. In practice, it is not fea-
sible to compute the full posterior probability distribution, nor to map this distribution onto the full ocean 
state space. We therefore need to appeal to approximation methods.

The posterior probability distribution of the control variables can be approximated by the Gaussian 
min( , )u P , with N × N covariance matrix P equal to

  





 


1/2 1/2

1
.

1

M T
i

i i
i i

P B B v B v� (2)

Here,  
1{ , }M

i i iv  is the set of orthonormal eigenvectors vi with associated nonzero eigenvalues λ1 ≥…≥ λM′ > 0 
of the misfit Hessian:
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Figure 1.  Workflow for Hessian uncertainty quantification (UQ) in ocean state estimation. Starting from an observing 
system (gray box), inverse uncertainty propagation along path (UQ1) reduces the uncertainty in the control variables 
(green box), see Section 2.2. A subsequent forward uncertainty propagation along path (UQ2) reduces the uncertainty 
in a chosen quantity of interest (QoI, purple box), see Section 2.3. Green and black arrows indicate propagation of 
prior and posterior uncertainty, respectively. The degree to which the observing system reduces uncertainty in the QoI, 
via a composite uncertainty propagation along paths (UQ1) and (UQ2), is referred to as the observing system's proxy 
potential for the QoI (Section 2.4).
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In Equation 3, the entries of the M × N matrix A are the sensitivities




,
(Obs ) ,i

i j
ju

A� (4)

evaluated at umin. Furthermore, B1/2 denotes an N × N matrix which has an inverse, B−1/2, and satisfies 
B1/2 BT/2 = B (where BT/2 is the transpose of B1/2). The N × N matrix Hmisfit is the linearized Hessian (or 
Gauss-Newton Hessian; Chen, 2011) of the rescaled model-data misfit term, misfit ( )J u  (Equation 1). The res-
caling is performed through the change of variables  1/2u B u, and can be thought of as a nondimensional-
ization if B is diagonal. In summary, Equation 2 phrases the posterior uncertainty P as the prior uncertainty 
B, reduced by any information {vi, λi} obtained from the observations. Equation 2 has been known and used 
in the NWP and CSE communities for many years (see, e.g., Bui-Thanh et al., 2012; Leutbecher, 2003). A 
self-contained derivation is relegated to the supporting information (Text S1).

Next, we inspect the set {vi, λi} in more detail as it fully characterizes the information obtained from the 
observations. The eigenvectors 


1{ }M

i iv  of the misfit Hessian (Equation 3) are the data-informed directions 
within the control space. Along a data-informed direction vi, the function misfit ( )J u  has curvature λi > 0 
(Figure 2a). The eigenvalue λi captures the strength of the data constraint imposed on the control direction 
vi, with large λi corresponding to a strong observational constraint. The control directions along which 

misfit ( )J u  is not curved are not informed by the observations (Figure 2b). Note that M′ ≤ min(M, N); that is, 
the number of independent data-informed directions, M′, is less than or equal to the number of observa-
tions, M, and the number of control variables, N.

If an observing system consists of only a single observation (M  =  1) with simulated counterpart 
Obs1(u) = Obs(u) and observational noise variance R = ɛ2 > 0, the misfit Hessian (Equation 3) simplifies 

to misfit 1 1 1 ,TH v v  with
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Here, N  denotes the N-dimensional vector space of real numbers, and      1Obs ( (Obs) / , , (Obs) / )u uu  
     1Obs ( (Obs) / , , (Obs) / )T

Nu uu , evaluated at umin. Furthermore, we define Obs
B  as the Euclidean norm of the vector 

/2 ObsT
uB , that is
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Obs Obs 0.TB

uB� (6)

Put differently, the only data-informed direction is spanned by the prior-weighted sensitivity vector 
/2 ObsT

uB  (Equation 5), where “prior-weighting” is through multiplication by BT/2. Similarly, for an ob-
serving system with more than one observation (M > 1), the data-informed subspace of the control space 
is spanned by the M prior-weighted sensitivity vectors BT/2∇uObs1, … , BT/2∇uObsM. To obtain the eigenvec-
tors of the misfit Hessian, one has to orthonormalize and rotate these M vectors within the data-informed 
subspace (Appendix A). In particular, the eigenvectors of our misfit Hessian—which contains the second 
derivatives of Jmisfit—are fully determined by first (rather than second) derivatives of the observed quanti-
ties, that is, by ∇uObsi.

For M = 1, the observational noise, ɛ2, appears in the denominator of λ1 (Equation 5). In particular, for van-
ishing ɛ2, the eigenvalue λ1 tends to infinity. This fact generalizes to the case M > 1: in the limit of vanishing 
observational noise (  0R ), the eigenvalues λi of the misfit Hessian (Equation 3) tend to infinity,

  .i� (7)

That is, misfit ( )J u  becomes increasingly curved (Figure 2a) and the constraint by the observations increas-
ingly strong.
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2.3.  Forward Uncertainty Propagation

To assess the observational constraints on a QoI, the inverse uncertainty propagation along path (UQ1; 
Figure 1) has to be followed by a forward uncertainty propagation along path (UQ2; Figure 1). In other 
words, we quantify how the uncertainty reduction in the controls, due to the new observational informa-
tion, reduces uncertainty in the QoI, a diagnostic of the model evaluated at umin. Forward propagation of 
prior uncertainties (B, dotted green arrow) and posterior uncertainties (P, dotted black arrow) along path 
(UQ2) results in the prior and posterior QoI variances (see Isaac et al., 2015, or Text S2 in the supporting 
information):

( ) , { , }.
/QoI QoI QoI QoI

C

u u u
C C C B P

2 1 2
2

       
T� (8)
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Figure 2.  (a and b) Curvature of the rescaled model-data misfit function, misfit ( )J u , at the cost function minimizer 
 minu , along two directions in the control space: (a) the data-informed direction vi (Equation 3) and (b) a noninformed 
direction. (c) The direction of interest, q (Equation 10), orthogonally decomposed into q = qobs + qnull. The data-
informed component, qobs, is the projection of q onto the data-informed subspace. The component qnull lies in the 
nullspace, that is, the subspace that is not informed by the data. Parts of the unit sphere of the control space are 
displayed in black, and q has unit length. The larger the radius of the orange dashed circle, defined by the length of qobs, 
the higher the dynamical proxy potential of the considered observing system for the QoI.
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We infer the prior-to-posterior reduction in QoI uncertainty, relative to the prior uncertainty:
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M
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i
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The second equality in Equation 9 holds by virtue of Equations 8 and 2. Here,  

1{( , )}M

i i iv  are the eigenvec-
tors and eigenvalues of the misfit Hessian (Equation 3), • denotes the “dot” (or Euclidean inner) product 

between two vectors in N , and
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The unit vector q is of key interest: it is the direction within the control space to be constrained in order to 
inform the QoI. It can be written as the orthogonal decomposition q = qobs + qnull (Figure 2c). qobs is the 
component that lies in the data-informed subspace, given by the projection 

 obs 1( • ) .M
i i iq q v v  The com-

ponent qnull lies in the orthogonal complement of the data-informed subspace: the null space, that is, the 
subspace that is not informed by the data. Uncertainty is only reduced along the data-informed component, 
qobs, not along the nullspace component, qnull.

2.4.  Dynamical and Effective Proxy Potential

Relative reduction in QoI uncertainty,  2
QoIΔ  (Equation 9), rigorously quantifies the dynamical constraints 

of an observing system (gray box, Figure 1) on a QoI (purple box, Figure 1), as the result of the composite 
uncertainty propagation along paths (UQ1) and (UQ2). We refer to  2

QoIΔ  as the proxy potential of the ob-
serving system for the QoI (Loose et al., 2020). Building on Equation 9, we distinguish between dynamical 
proxy potential




   2
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and effective proxy potential
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of the examined observing system for the QoI. Recall that M′ ≤ M is the number of independent data con-
straints, characterized by the eigenvectors and eigenvalues  

1{ , }M
i i iv  of the misfit Hessian (Equation 3). Ge-

ometrically, DPP is equal to the squared length of qobs, the data-informed component of q in control space 
(Figure 2c). Note that EPP is smaller than DPP, because all factors ηi = λi/(λi + 1) are smaller than 1. For 
vanishing observational noise, EPP approaches DPP, since all eigenvalues λi tend to infinity (Equation 7), 
and consequently all factors ηi = λi/(λi + 1) tend to 1 (see also Appendix B). The bounds for DPP and EPP 
correspond to the cases for which the observing system provides no constraint (EPP = DPP = 0), and for 
which it serves as a perfect proxy for the QoI, in the case of noise-free observations (DPP = 1) and noisy 
observations ( EPP 1).

If the observing system under consideration consists of only a single observation (M = 1), Equation 11 
simplifies to  2

1 1DPP(Obs ;QoI) ( • )q v . This expression coincides with the definition of dynamical proxy 
potential in Loose et al. (2020, Equation 4 therein).
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3.  Application to the North Atlantic
We illustrate the concepts of Hessian UQ and proxy potential in a North Atlantic case study. Section 3.1 
describes our experimental setup, including our choice of QoI and observations. We then assess proxy po-
tential of the observations for the QoI, for the cases of noise-free observations (DPP, Section 3.2) and noisy 
observations (EPP, Section 3.3).

3.1.  Experimental Setup

Our experimental setup coincides with the one described in section 3.1 of Loose et al. (2020) and is em-
bedded in the ECCO version 4, release 2 (ECCOv4r2, Forget et al., 2015) state estimation framework. We 
use the Massachusetts Institute of Technology GCM (Adcroft et al., 2018; Marshall et al., 1997), in a global 
configuration, at a nominal horizontal resolution of 1°, and with 50 vertical levels. The linear sensitivities 
of the QoI and observed quantities to all control variables (Equations 5 and 10, Appendix A) are computed 
using the respective adjoint models generated through algorithmic differentiation with the commercial tool 
Transformation of Algorithms in Fortran (TAF; Giering & Kaminski, 2003).

Our QoI is heat transport across the Iceland-Scotland ridge (black line, Figure 3), denoted by HTISR. We 
study four different hypothetical temperature observations in the North Atlantic, located inside the yellow 
dots in Figure 3, and labeled by θA, θB, θC, θD. Observations θA and θC are in the Irminger Sea at (40 °W, 60 
°N), observation θB off the Portuguese coast at (12 °W, 41 °N), and θD in Denmark Strait at (28 °W, 66 °N). 
θA, θB, and θD are subsurface observations, situated at 300 m depth, whereas θC is a surface observation. 
Exact definitions for the model calculations of HTISR and   can be found in Loose et al. (2020). We quantify 
dynamical and effective proxy potential of the five-year mean of the observations for the five-year mean 
of our QoI, for zero lag. Sensitivities of the QoI (Equation 10) and observations (Equation 5) to the control 
variables are computed from the final five years (2007–2011) of the ECCOv4r2 state estimate.

As in Loose et al. (2020), the control variables are comprised of the time-mean, spatially-varying forcing 
fields Qnet,↑, EPR, τx, and τy (Table 1). These two-dimensional forcing fields, Fm(i, j), m = 1, …, 4, are flattened 
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Figure 3.  Overview map of the case study in this work. The quantity of interest (QoI) is heat transport across the 
Iceland-Scotland ridge (black line), denoted by HTISR. The temperature observations θA, θB, θC, θD are located inside the 
yellow dots. θA, θB, θD are subsurface (at 300 m depth), θC at the sea surface. The arrows show approximate pathways 
of near-surface currents carrying warm Atlantic waters (orange) and cold Arctic waters (purple): EGC, East Greenland 
Current; IC, Irminger Current; NAC, North Atlantic Current; NwAC, Norwegian Atlantic Current.
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and concatenated into a long control vector,  1( , , )T
Nu uu . The length of the control vector, N, is 6(10 ) ,  

equal to 4 times the number of model surface grid cells covering the global ocean (next to last column, Ta-
ble 1). We assign each of the four forcing fields, Fm(i, j), a spatially constant prior standard deviation, ΔFm 
(last column, Table 1; see also Loose et al., 2020). Moreover, prior cross-correlations are set to zero, corre-
sponding to the assumption that the decorrelation length in the surface forcing is less than the grid scale 
(∼1°). These choices result in a diagonal N × N prior covariance matrix, B, whose diagonal is populated by 
the 2(Δ )mF  assigned in Table 1. The rationale for our simplified choice of control variables and prior covari-
ance matrix is that it allows a more concise presentation of the results, facilitating a clear understanding of 
the methodology presented in Section 2 and its underlying dynamical and mathematical concepts.

3.2.  Noise-Free Observations

We begin by exploring the DPP of the temperature observations  , ⋆ = A, B, C, D, for our QoI, HTISR. DPP is 
equal to the relative uncertainty reduction in HTISR that is achieved when adding   to the underlying state 
estimation framework, in the limit of vanishing observational noise (Equation 11). We first study the DPP 
of each observation individually (Section 3.2.1), and then the DPP of observing systems that are formed by 
multiple   (Section 3.2.2).

3.2.1.  Degree of Shared Adjustment Mechanisms

The DPP of each observation   for HTISR quantifies the degree to which the direction of interest, q, projects 
onto the  -informed subspace of the control space (Equation 11 and Figure 2c). We denote the (one-di-
mensional)  -informed direction by v. As an example, Figures 4a–4e show q (Equation 10) and v (Equa-
tion 5), restricted to their τy (meridional wind stress) components:

 
   

 
     

    
       

1 1ISR
| HT |

(HT )( ) Δ , ( ) Δ .
( , ) ( , )y yy y

y yi j i j
B Bq v




� (13)

Here, the normalization factors  HT 6TWB  and  B
 , whose values are reported in Table 2, are prior un-

certainties, computed according to Equations 8 and 6, respectively. In Equation 13, prior-weighting, that 
is, multiplication by BT/2, has simplified to an element-wise multiplication of the sensitivity vectors by the 
constant Δτy (Table 1). The value in each model grid cell in Figures 4a–4e corresponds to a vector entry of q 
= (q1, …, qN) and v = (v1, …, vN), as visualized in the insets in Figures 4a and 4b.

The Qnet, EPR, and τx vector components are not shown, but their relative contributions to the magnitude 
of the vectors q and v are illustrated in Figures 4f–4j. The relative contribution of each forcing field Fm to 
q is computed via

   
     


2

2 2 ISR
| HT

,

(HT )( ) Δ , 1, ,4,
( , )F mm

i j m
F m

F i j
Bq� (14)

and similarly for v. The dark green bars in Figures 4f–4j are the area- (or 2l -) integrated, normalized and 
prior-weighted sensitivities from Figures  4a–4e. Put differently, the ratios in Figures  4f–4j measure the 

LOOSE AND HEIMBACH

10.1029/2020MS002386

9 of 25

m Forcing Fm(i, j) Symbol Time average # Variables ΔFm

1 Net upward surface heat flux Qnet,↑ 5 years 6 × 105 50 W/m2

2 Net surface freshwater flux EPR 5 years 6 × 105 5 × 10−8m/s

3 Zonal wind stress τx 5 years 6 × 105 0.05 N/m2

4 Meridional wind stress τy 5 years 6 × 105 0.05 N/m2

Table 1 
Control Variables and Prior Uncertainties in Our Case Study
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relative importance of each forcing field, Fm, for impacting HTISR and  , respectively. Wind forcing (τx, τy) 
is more influential than buoyancy forcing (Qnet, EPR) for HTISR and for all observations  , except for the 
surface observation θC, which is highly sensitive to local air-sea heat fluxes (Figure 4i).

The yellow labels in Figure 4 present the DPP (Equation 11) of   for HTISR, given by

  2
ISRDPP DPP( ;HT ) ( • ) .q v  � (15)

The vectors q and v are composed of the sensitivities of the QoI and observations, respectively, and capture 
all possible dynamical mechanisms via which perturbations in the control variables can change the QoI 
and observations. Therefore, DPP (Equation 15) evaluates the degree to which HTISR and   share their 
adjustment physics. Since wind adjustments dominate HTISR and (most) observations   (Figures 4f–4j), a 
comparison of the τy sensitivity map in Figure 4a with the τy sensitivity maps in Figures 4b–4e elucidates 
the dynamical mechanisms and teleconnections that generate proxy potential. These mechanisms are dis-
cussed in detail in Loose et al. (2020) and only briefly reviewed in the next paragraph.

In Figures 4a–4e, sensitivities emerge in two main regions: (I) in the coastal wave guide along the eastern 
boundary of the subtropical North Atlantic; and (II) in topographic wave guides in the northeast Atlantic 
and the Nordic Seas (see Figures 5a–5c for labeled regions). Wind forcing in region (I) drives a pressure 
adjustment mechanism (Jones et al., 2018; Loose et al., 2020) which alters both the ISR geostrophic trans-
port and the Irminger Current (Figure 3), causing anomalies in HTISR and in all temperature observations 
(Figures 4a–4e). Wind forcing in region (II) spins up an anomalous barotropic circulation around Iceland 
(Loose et al., 2020), which simultaneously alters the Norwegian Atlantic and East Greenland Currents (Fig-
ure 3), causing anomalies in HTISR and in the temperature observations θA, θC, θD (Figures 4a, 4b, 4d and 4e). 
HTISR and subsurface temperature in Denmark Strait, θD, are the quantities that are most sensitive to the lat-
ter mechanism, driven by wind forcing in region (II). Consequently, θD has the largest DPP for HTISR among 
all observations considered (30%). The lower DPP of θA (19%) is explained by the strong sensitivity of θA to 
wind forcing in both regions (I) and (II). This results in destructive interference of information propagation 
because wind forcing in region (I) causes responses in HTISR and θA of equal sign, while wind forcing in 
region (II) causes responses in HTISR and θA of opposite sign (Figures 4a and 4b). The DPP of θB and θC is 
only 1%, since θB is not sensitive to wind forcing in region (II) (Figure 5c), and θC, as a surface observation, 
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Figure 4.  (a–e) Sensitivities of five-year mean (a) heat transport across the Iceland-Scotland ridge (HTISR), (b) subsurface temperature in the Irminger Sea (θA), 
(c) subsurface temperature off the Portuguese coast (θB), (d) surface temperature in the Irminger Sea (θC), (e) subsurface temperature in Denmark Strait (θD) 
to changes in five-year mean meridional wind stress τy. The solid black-yellow line in (a) delineates the ISR, and the yellow dots in (b–e) mark the respective 
locations of the temperature observation. The sensitivities in (a–e) are weighted and normalized (thus unitless), and are the τy restriction of the vectors q (in a) 
and v (in b–e), see Equation 13. As an example, the insets in (a) and (b) show two arbitrarily chosen vector entries, respectively: ql, qm (entries of q), and vl, vm 
(entries of vA). (f–j) Relative contributions of the control fields Qnet,↑, EPR, τx and τy (Table 1) to the magnitude of the vectors (f) q, (g) vA, (h) vB, (i) vC, (j) vD, see 
Equation 14. The yellow labels show the dynamical proxy potential (DPP) of   for HTISR (Equation 15).

Obs Location    B
      / 1   (%)

θA Irminger Sea (subsurface) 0.1°C 0.048°C 0.23 19

θB Portuguese Coast (subsurface) 0.1°C 0.059°C 0.35 26

θC Irminger Sea (surface) 0.1°C 0.230°C 5.29 84

θC Irminger Sea (surface) 0.2°C 0.230°C 1.32 57

θC Irminger Sea (surface) 0.3°C 0.230°C 0.59 37

θD Denmark Strait (subsurface) 0.1°C 0.071°C 0.50 33

Table 2 

Observational Noise , Prior Uncertainty  B
  (Equation 6), Sensitivity-To-Noise Ratio   (Equation 18), and 

Effectiveness     / 1   , for Each Observation  , , , ,A B C D
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is mostly sensitivity to local forcing (Figure 5d). These characteristics lead to small sensitivity overlaps of 
HTISR with θB and θC.

3.2.2.  Data Redundancy versus Complementarity

Next, we demonstrate how DPP generalizes when considering multiple but still noise-free observations. We 
begin by combining θA with either of the remaining temperature observations  , , ,B C D . In Equation 1, 
the resulting observing system is represented by   ( , )A TObs  . To tease out independent sensitivity pat-
terns between θA and  , we orthonormalize the vector pair { , }Av v  (step (M.1) in Appendix A). This results 
in the orthonormal vector pair { ,( ) }Av v , where

 
 



( • )
( ) , , , .

( • )

A A

A A B C D
v v v v

v
v v v v

 


 


‖ ‖
� (16)

The observations θA and θB contain independent information. Indeed, θA is sensitive to wind forcing in both 
regions (I) and (II) (Figure 5a), whereas θB is sensitive to wind forcing only in region (I) (Figure 5b). Viewed 
in the {θA, θB}-informed subspace of the control space (Figure 5g), independent sensitivity information cor-
responds to the vectors vA and vB being close to orthogonal, with an enclosed angle of β = 74°. Consequent-
ly, ( )Bv  is only a slight modification of vB (Figures 5b, 5d and 5g). In contrast to θB, the observation θD shows 
very similar sensitivity to wind forcing as θA, concentrated in both regions (I) and (II) (Figures 5a and 5c). 
Similar sensitivity information is reflected by an angle of only δ = 30° between vA and vD (Figure 5h). Or-
thonormalization of the vector pair results in a removal of sensitivity to wind forcing in regions (I) and (II) 
(Figure 5e). The independent sensitivity information extracted from the observing systems (Figure 5) is 
independent of the chosen QoI.

We now return to our QoI, and use the independent sensitivity patterns obtained in Figure 5 to quantify the 
DPP of the system  { , }A   for HTISR. DPP is obtained through a projection of q onto the  { , }A  -informed 
plane (Figure  2c, Equation  11). This projection requires an orthonormal basis of the  { , }A  -informed 
plane, for which one may choose either {v1, v2} or { ,( ) }Av v . Here, we choose the latter, that is, we compute

      2 2 2
ISRDPP( , ;HT ) ( • ) ( • ( ) ) DPP ( • ( ) ) .A A Aq v q v q v  � (17)

The first term on the right hand side is equal to 19% (cf. Figure 4b) and forms the baseline value in Fig-
ures 6a–6f. The second term shows the gain in DPP when adding   to θA, and is displayed by the hatched 
contribution in Figures  6b–6d. The generation of the hatched contribution is further explained in Fig-
ures 6g–6i. The left, solid bar in each panel shows the DPP of each individual observation,  2DPP ( • )q v   
computed through the projection of prior-weighted and normalized sensitivity vectors (cf. Figures 4c–4e). 
The right, hatched bar in each panel shows  2( • ( ) )q v ; this projection uses the modified sensitivity pat-
terns from Figure 5.

The consequence of orthonormalization now becomes apparent. When combining θA and θB, data com-
plementarity results in a DPP of (19  +  6)%  =  25% (Figure  6b), exceeding the sum of DPPA  =  19% and 
DPPB = 1% (Figure 6g). Put differently, considering θA and θB in combination helps to extract some of the 
observations' sensitivity information which is lost in destructive interference when treating θA or θB in isola-
tion. The phenomenon of destructive interference was discussed in Section 3.2.1 and in Loose et al. (2020). 
Data complementarity can be viewed from yet another angle, when inspecting the position of q projected 
onto the {θA, θB}-informed subspace, denoted by qobs (Figure 6j). qobs is not aligned with either of the vectors 
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Figure 5.  (a–c) Replots of subpanels in Figure 4, as indicated by the gray labels. The black boxes (I) and (II) contain the dominant sensitivity patterns that 
are the main origin of proxy potential for HTISR (see Section 3.2.1). (d and e) Modified sensitivity maps from (b and c), as a result of extracting independent 
sensitivity information from the observation θA and  , for (d)  B , (e)  D . The modified sensitivity maps are the τy component of ( )v , computed as 
linear combinations of vA and v, as shown in (g and h). (f) Three-dimensional subspace of the control space that is informed by the triple {θA, θB, θD}. (g and h) 
Planes embedded in (f), showing the two-dimensional subspaces informed by the pairs (g) {θA, θB} and (h) {θA, θD}. The planes are spanned by (g) vA and vB, with 
enclosed angle β = 74°, and (h) vA and vD, with enclosed angle δ = 30°. Orthonormalizing the pair { , }Av v  results in (g) ( )Bv  and (h) ( )Dv .
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vA or vB. Therefore, a true information gain in the QoI is achieved when combining the observations θA and 
θB: the length of qobs increases, when advancing from the θA-informed and θB-informed components (orange 
dots, Figure 6j) to the {θA, θB}-informed component (radius of orange circle, Figure 6j).

Adding the observations θD or θC to θA involves a certain degree of data redundancy, which is quanti-
fied in Figures 6h and 6i. Proxy potential of θA for HTISR originates in wind forcing in regions (I),(II) 
(Figure 5a); this sensitivity information is already contained in θD (Figures 5c and 6k). Consequently, 
DPP(θA, θD; HTISR) does not exceed DPPD = 30% (Figures 6c and 6h). Similarly, the relevant sensitivity 
information contained in the Irminger Sea surface observation θC is already contained in the Irminger 
Sea subsurface observation θA (Figure 6l). Thus, θC does not lead to a gain in DPP when added to θA 
(Figure 6d).

Finally, we are interested in the maximum achievable DPP for HTISR, obtained by combining all four obser-
vations in our case study. Viewed within the three-dimensional subspace that is informed by the observing 
system {θA, θB, θD} (Figure 5f), the {θA, θD}-informed yellow plane is almost orthogonal to the {θA, θB}-in-
formed green plane (where the black plane is exactly orthogonal to the green plane). Hence, when adding 
θD to the observing system {θA, θB}, the gain in DPP (green-yellow hatched, Figure 6e) almost coincides with 

 2( • ( ) )Dq v  (yellow hatched, Figure 6c), leading to a total DPP of 35% (Figure 6e). Completing the observ-
ing system by θC does not increase the DPP any further (Figure 6f).

3.3.  Noisy Observations

So far, our analysis has assumed noise-free observations. Next, we study the EPP of our observations  

; this notion does account for observatio nal noise, as encoded in the noise covariance matrix R (Equa-
tion 1). Recall that the EPP of   for HTISR is equal to the relative uncertainty reduction in HTISR that 
is achieved when adding   to the underlying state estimation framework (Equation 12). Following the 
common assumption of uncorrelated observation errors (e.g., Forget et al., 2015), we only need to specify 
the diagonal entries of R, that is, the error variance  2

 of each observation  . We assign  = 0.1°C for all 
observations (Table 2). We also consider the impact of varying ɛC, by testing for ɛC = 0.2°C and ɛC = 0.3°C. 
The rationale for this addition is that climatological surface temperature, measured by θC, is more variable 
than climatological subsurface temperature (Locarnini et al., 2013), and can therefore be expected to be 
more noisy.

3.3.1.  Sensitivity-To-Noise Ratio

The strength of the constraint provided by each individual observation   is quantified by the eigenvalue   
(Equation 5) corresponding to the  -informed direction v (Figure 2a). It is given by

 
  

 
      

22 4

2 2 1 ,

( ) 1 Δ .
( , ) m

m i j m
F

F i j

B 
 

 

� (18)

 describes the sensitivity-to-noise ratio (SensNR): it is large if either   has high overall prior-weighted 
sensitivity,  2( )B

 , or if the observational noise  2
 is small. Since surface temperature is much more sensitive 
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Figure 6.  (a–f) Dynamical proxy potential (DPP; Equations 17 and 11) of six different observing systems for the QoI, HTISR. Each observing system is formed by 
the temperature observations   contained in the vector of colored labels below each subpanel. DPPA = 19% (gray bar) forms the baseline value, and the hatched 
contributions show the gain in DPP when adding more observations. (g–i) The hatched bars (right bar in each of the three tuples) coincide with the hatched 
contributions in (b–d) above the baseline value. The height of the hatched bars is equal to  2( • ( ) )q v , for (g) ⋆ = B , (h)  D , (i)  C  The height of the solid 
bars (left bar in each of the three tuples) is equal to DPP⋆ =  2( • )q v . In each of the three panels (g–i), an increase (decrease) in bar height from left to right 
indicates data complementarity (redundancy) between θA and  . (j and k) Replots of Figures 5g and 5h, but with added qobs (orange vector, cf. Figure 2c). qobs 
is the  { , }A  -informed component of q, for (j)  B , (k)  D . The orange dashed circle shows the length of qobs, and the orange dots the projections of qobs 
onto vA and v. (l) Same as (j and k), but for  C .
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to atmospheric forcing than subsurface temperature ( C
B B

 ,  , ,A B D , Table 2), the SensNR of θC is 
higher than that of θA, θB, θD (Figure 7). This remains true if the noise variance for θC (i.e.,  2

C) is assumed 
four–or even nine–times as large as that of the subsurface observations (Figure 7).

Note that  2( )B
  is equal to the prior uncertainty in the observed quantity   (cf. Equation 8), i.e. the uncer-

tainty given the prior knowledge in the ocean state estimate, before taking the actual measurement. Thus, 
observations with SensNR smaller than 1 (here: θA, θB, θD, gray rectangle in Figure 7) are characterized by a 

prior uncertainty,  2( )B
 , that is smaller than their assumed observational uncertainty,  2

.

The EPP of   for HTISR is given by EPP ·DPP   (Equation 12), with factor




 


1.
1




�

The factor   indicates what fraction of DPP can be retrieved and will therefore be referred to as the 
“effectiveness” of the observation  . Note that, in contrast to DPP, the observation's effectiveness,  , is 
independent of the QoI under consideration. Instead, it is solely determined by the observation's SensNR 
 . Since the function      / 1  increases monotonically with λ (Figure 7), observations with higher 
SensNRs are more effective. Therefore, the effectiveness of the surface observation θC is higher than that of 
the subsurface observations θA, θB, θD (Figure 7). In fact, the effectiveness of θA, θB, θD is less than 50%, due 
to their SensNR being less than 1 (gray rectangle, Figure 7).

In this section, we studied the SensNR,  , and associated effectiveness,  , of each individual observation 
 . In the next section, we will establish a connection between the   and the set of eigenvalues  

4
1{ }i i , 

where the latter set characterizes the observing system that is jointly formed by {θA, θB, θC, θD}.

3.3.2.  Combining Noisy Observations

We now combine all four temperature observations of our case study, while taking into account their obser-
vational noise. In Equation 1, the resulting observing system is represented by
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Figure 7.  The black curve is the function      / 1 . The colored lines map the sensitivity-to-noise ratio of   ( ,  
Equation 18, circles) to the effectiveness of   (     / 1   , diamonds), cf. the values in Table 2. An observation 
that falls into the light gray rectangle has sensitivity-to-noise ratio smaller than 1.
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          2 2 2 2, , , , diag( , , , ),
TA B C D

A B C DObs R� (19)

where the latter denotes a diagonal 4 × 4 matrix, with diagonal entries equal to the noise variances  2
, cho-

sen as in Table 2. For the sake of brevity, we focus on the case ɛC = 0.2°C. (Cases with alternative choices for 
ɛC are presented in Figure S1). We compute the eigenvectors and eigenvalues,  

4
1{ , }i i iv , of the misfit Hessian 

Hmisfit (Equation 3) as described in Appendix A.

By definition, the first eigenvector v1 points in the direction of maximal curvature of misfit ( )J u . This direction 
is almost aligned with the θC-informed direction, spanned by vC (Figure 8a), because the surface observation 
θC has a much higher SensNR than the remaining observations (Figure 7). The remaining eigenvectors, v2, 
v3, v4, have little contribution from θC (purple dots, Figure 8a), and are instead a linear combination of v, 
 , ,A B D  (Figure 8b). The τy component of v2 (Figure 8d) extracts the dominant sensitivity patterns along 

the eastern boundary of the North Atlantic (region I), shared by θA, θB, and θD, and in the northeast Atlantic 
and the Nordic Seas (region II), shared by θA and θD (Figures 5a–5c). The τy component of v3 (Figure 8e) is 
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Figure 8.  Eigen-decomposition  
4

1{ , }i i iv  of Hmisfit (Equation 3) for the observing system in Equation 19, with   = 0.1°C for  , ,A B D  and ɛC = 0.2°C. (a and 
b) Orientation of the eigenvectors v1, v2, v3, v4 (purple vectors/dots) within the (a) {θA, θC}-informed, (b) {θA, θB, θD}-informed subspace of the control space (cf. 
Figures 6l and 5f). The ellipses in (a) show the contour lines of misfit ( )J u . (c–f) τy component of the four eigenvectors. Each inset reports the eigenvalue λi, and 
the associated effectiveness ηi = λi/(λi + 1).



Journal of Advances in Modeling Earth Systems

governed by sensitivities in region (I), as set by θB. Lastly, the τy component of v4 (Figure 8f) is dominated by 
sensitivity dipoles local to the three observing sites (yellow dots), which emerge due to the effect of Ekman 
pumping.

The eigenvalues λi (inserted in Figures 8c–8f) are closely linked to the SensNRs   (Table 2) of all observa-
tions   involved, via the following relations (Bunch et al., 1978):

         

     
4

1
1

and max{ , , , }.A B C D A B C D
i

i
� (20)

Each eigenvalue λi determines the effectiveness, ηi = λi/(λi + 1), of the eigenvector vi (insets in Figures 8c–8f 
and diamonds in Figure 9b). We consider how the effectiveness of the observing system components chang-
es with observational noise, and inflate the observational noise covariance by a factor α, to αR. As α varies 
from 0 (no noise) to 1 (full noise), effectiveness decays as λ/(λ + α), from 100% to λ/(λ + 1) (Equation B1). 
Here, λ is a placeholder for either a SensNR   (Figure 9a) or an eigenvalue λi (Figure 9b). The decay in 

LOOSE AND HEIMBACH

10.1029/2020MS002386

18 of 25

Figure 9.  (a and b) Decay in effectiveness of (a) each individual observation   and (b) the eigenvectors vi of the 
combined observing system (Equation 19), as a function of α. Incresasing the parameter α inflates the observational 
noise (αR) from no noise (α = 0) to full noise (α = 1). Without noise, all observations have an equal effectiveness 
of 100%. The colored diamonds repeat the values for λ/(λ + 1) from Figure 7 and Figures 8c–8f. (c and d) Decay in 
proxy potential for the quantity of interest, HTISR, again as a function of α. Without noise, proxy potential is equal to 
dynamical proxy potential (DPP; pentagons, cf. Figures 4b–4e, and 6f); but decays to effective proxy potential (EPP; 
squares) for fully inflated noise. The black dashed curve in (c) coincides with the one in (d), and shows proxy potential 
for all observations combined.
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effectiveness of the surface observation θC (Figure 9a) as well as v1 (Figure 9b) is slower than that of the 
remaining observations and eigenvectors.

Decay in effectiveness causes decay in proxy potential. When considering individual observations  , inflat-
ing observational noise leads to a decay in proxy potential according to     2/ ( ) ( • )q v    (Figure 9c). 
If instead, the full observing system is considered jointly, the decay in proxy potential is given by


  

4
2

1
( • ) ,i

i
i i

q v� (21)

see Figure 9d (and Appendix B). The expression in Equation 21 involves the eigenvectors and eigenval-
ues of the misfit Hessian. For noise-free observations, proxy potential is equal to DPP (α = 0, pentagons 
in Figures 9c and 9d, Equation 11). It decays to EPP for fully inflated noise (α = 1, squares in Figures 9c 
and 9d, Equation 12). Even though the surface observation θC has highest SensNR and, thus, slowest decay 
in effectiveness (Figure 9a), its proxy potential for HTISR is lower than that of the subsurface observations θA 
and θD, due to its almost negligible DPP at the very outset α = 0 (Figure 9c). Through a similar argument, 
v1 contributes less to proxy potential than v2 and v3 (Figure 9d), despite its relatively highest effectiveness 
(Figure 9b). The insignificance of θC implies that proxy potential of the observing system {θA, θB, θC, θD} for 
HTISR is essentially insensitive to the choice of the observation error ɛC (Figures S1g–S1i).

4.  Discussion
Hessian UQ and optimal observing system design have remained underexplored computational tools in 
oceanography, despite their successful application by the NWP and CSE communities. In this paper, we 
provided dynamical insight into Hessian UQ and how to leverage this method to design ocean climate ob-
serving systems. Our results warrant some general, conceptual remarks (Section 4.1), as well as discussion 
of specific implications for our North Atlantic case study (Section 4.2). We conclude with a discussion of 
dimension reductions of the Hessian (Section 4.3), limitations (Section 4.4), and an outlook (Section 4.5).

4.1.  Conceptual Considerations

In the context of Hessian UQ, optimality refers to a well-defined goal of the observing system, often ex-
pressed in terms of one or several QoIs to be monitored (e.g., ocean transports) or predicted (e.g., sea-ice 
area). Given such a QoI, we rephrased the degree of optimality of an observing system in terms of ‘proxy 
potential' (Equation 12), defined as the reduction in QoI uncertainty (on a scale of 0%–100%) that would 
be achieved if the observing system was added to the ocean state estimate. We showed that proxy potential 
combines three main concepts: (i) the degree of shared adjustment physics between QoI and observations, 
measured by the projections q•vi (Figures 4 and 8); (ii) data redundancy versus complementarity of the 
distinct members of the observing system, through orthogonality of {vi} (Figures  5 and  6); and (iii) the 
sensitivity-to-noise ratios (SensNR) of the observational assets, which determine the effectiveness of the 
observing system, through multiplication by the factors λi/(λi + 1) (Figure 9).

Concept (i) can be interpreted as the dynamical analog of statistical correlation between QoI and observa-
tions, where proxy origins (in the space of uncertain control variables) are unambiguously identified by the 
adjoint model (Loose et al., 2020).

Concept (ii) is associated with the eigenvectors vi of the misfit Hessian. Given their orthogonal structure, 
the eigenvectors may be compared to statistical empirical orthogonal functions (EOFs), but with the fol-
lowing important distinction. Whereas EOF patterns are based purely on statistical evidence, the Hessian 
eigenvector patterns are computed through the model's linearized dynamics. The eigenvector patterns arise 
as a linear combination from sensitivities of the observed quantities that are part of the observing system 
under investigation. They elucidate the dynamical connections between changes registered by the observ-
ing system and (local and remote) oceanic perturbations back in time that cause these observed changes 
(Figure 8).
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Concept (iii) is linked to the eigenvalues λi of the misfit Hessian. The eigenvalues quantify the strength of 
the constraints imposed by the observing system, and are determined by the SensNR of all observations that 
are part of the observing system. The SensNR of an observation can be regarded as the dynamical analog 
of the statistical signal-to-noise ratio (SNR). The SensNR accounts for all possible forcing scenarios (as 
captured by changes in the control variables), while the SNR is based on the statistics of observed or simu-
lated data, which samples only certain forcing occurrences. The leading eigenvectors inherit the sensitivity 
patterns from observations with highest SensNR (Figures 8 and S1). The higher the observations' SensNRs 
(or eigenvalues), the more efficiently the observations reduce uncertainty in the state estimate and QoIs 
(Figure 9).

4.2.  Implications for Our Case Study

We found that wind anomalies in the coastal and topographic wave guides, along the eastern and northern 
boundaries of the North Atlantic, are the largest origins of proxy potential (Figure 4). Such wind anoma-
lies drive pressure adjustment mechanisms with a basin-wide response in North Atlantic circulation and 
temperature (Loose et al., 2020): adjustments that are registered by QoIs and observations alike, even if the 
observing system is remote from the QoI. This result can be rephrased in terms of UQ (Figure 1) as follows. 
North Atlantic temperature observations reduce uncertainties in various atmospheric forcing variables at 
various locations (via path UQ1). Among these, it is primarily uncertainty reduction in surface momentum 
fluxes along the eastern and northern boundaries of the North Atlantic which leads to uncertainty reduc-
tion in the QoI, heat transport across the Iceland-Scotland ridge (via path UQ2).

For a given subsurface temperature observation in the Irminger Sea, our Hessian UQ analysis reveals that a 
subsurface temperature observation off the Portuguese coast would provide more independent information 
than a subsurface temperature observation in Denmark Strait (Figures 5 and 6). This result is explained by 
the fact that the Irminger Sea and Denmark Strait subsurface observations have very similar adjustment 
physics. Therefore, their information content is to a certain degree redundant.

Finally, our case study suggests that surface temperature observations have lower proxy potential for re-
mote QoIs than subsurface temperature observations, despite their higher SensNR (Figure 9). This is due 
to strong sensitivity of surface temperature to local air-sea fluxes, which overrides their sensitivity to the 
large-scale, basin-wide adjustment mechanisms that are relevant for remote QoIs (Figure 4).

4.3.  Dimension Reduction

One of the main computational challenges to UQ is the curse of dimensionality (Bellman, 1957). Since the 
uncertain parametric model inputs (or control variables) are typically adjusted on a grid point basis of the 
GCM, their number is large: 6(10 )  to 8(10 ) . The calculation of the full Hessian—a matrix with 12(10 )  to 

16(10 )  elements—would require years of extensive computer resources, an intractable endeavor.

The success of Hessian UQ relies on approaches that are more computationally efficient, two of which 
we consider: first, an a-priori reduction, and second, a data-informed reduction of the control space 
dimension. In this paper we have pursued the second approach, as we will further discuss in the next 
paragraph. In contrast, Kaminski et al. (2015, 2018) follow the first approach, by aggregating and ad-
justing their control variables uniformly over large regions (e.g., Figure 2 in Kaminski et al.,  2015), 
rather than on a model grid point basis. This “large region approach” reduces their control space to a 
total of about 150 control variables, and it is then feasible to explicitly compute the full Hessian (1502 
entries). In practice, the large region approach requires to spatially accumulate sensitivities of QoIs 
and observed quantities over the pre-defined large regions, as exemplified in Figure  10. The eight 
regions defined in Figure 10c would reduce the dimension of our control space from 6(10 )  (Table 1) 
to 8 ⋅ 4 = 32. However, the spatial accumulation of sensitivities would imply that proxy origins and 
adjustment mechanisms, for example, along the basin boundaries, are no longer resolved (Figures 10d 
and 10e). Proxy potential would be artificially lost (right yellow label, Figure 10). Note that for other 
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QoIs, this approach could overestimate (rather than underestimate) proxy potential and uncertainty 
reduction.

Because of the ad-hoc nature of a-priori control space reductions, and the difficulties it incurs (Figure 10), 
we advocate the approach of data-informed reductions of the control space for the following reason. Even 
though the Hessian in our North Atlantic case study consists of 12(10 )  entries (Section 3.1), the misfit 
Hessian is only of rank 4, equal to the number of observations involved. The four Hessian misfit eigenvec-
tors with nonzero eigenvalues capture the Hessian's full information. They were extracted efficiently while 
preserving the physical mechanism that led to uncertainty reduction. The concept of data-informed control 
space reduction generalizes to large, complex observing systems, for example, mixed mooring arrays and 
autonomous instruments, which include thousands to millions of observations in time and space. While 
it becomes intractable to compute all (thousands to millions of) misfit Hessian eigenvectors, randomized 
numerical linear algebra for low-rank approximations can be used to extract the leading eigenvectors with 
highest eigenvalues (M′ ≪ M in Equation 3, Bui-Thanh et al., 2012; Kalmikov & Heimbach, 2014; Liberty 
et al., 2007).

Moore et al. (2017) used a related technique in a regional ocean setting. They derived data-informed re-
duced-rank approximations of the Hessian, but with reductions sought in the observation space, rather than 
the control space. The two approaches are equivalent (or “dual” to each other), and the implementation of 
the underlying variational data assimilation scheme may determine which of the two approaches is more 
convenient to employ. We argue that an eigen-decomposition in the control space, as suggested here, has the 
appeal of a straightforward dynamical attribution of proxy origins.

4.4.  Limitations

Some shortcomings of the method presented should be acknowledged. Hessian UQ relies on an accurate 
specification of the prior and noise covariance matrices, B and R (Equation 1). This is emphasized, for 
instance, by the fact that the relative weight of surface versus subsurface observational noise determines 
the observations' relative effectiveness, and thus the patterns that dominate the leading eigenvectors of the 
misfit Hessian (Figure S1). A second shortcoming is that the results may suffer from model dependency, 
a problem common to all methods for model-informed observing system design. A third limitation is that 
Hessian UQ makes a Gaussian approximation of the posterior probability distribution for the uncertain 
control space and the estimated ocean state space. This approximation is accurate if the linearized model 
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Figure 10.  (a and b) Replot of Figures 4a and 4b. (c) Definition of eight “large regions" covering the global ocean. (d 
and e) Same τy sensitivities as in (a and b), but now accumulated over the eight regions defined in (c). The maps in 
(d and e) are the τy restictions of q and vA, if the control space is reduced a-priori from 6(10 )  dimensions (Table 1) 
to only 32, via the “large region approach.” The yellow labels show the values for dynamical proxy potential (DPP; 
Equation 11), using the full control space (left, cf. Figure 4b) and the a-priori reduced control space (right). On the 
right, DPP evaluates to 0% due to an entire cancellation in the projection q • vA. For instance, sensitivities of equal sign 
in the subtropical Atlantic (region 2, (d) versus (e)) make a strongly positive contribution to q • vA, while sensitivities of 
opposite sign in the Norwegian Sea (region 5, (d) versus (e)) make a strongly negative contribution.
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provides a good representation of the ocean dynamics on the time scales investigated. The results by Loose 
et al. (2020) indicate that on the five-year time scale considered, nonlinearity is not a major obstacle, at least 
not in the non-eddy-resolving model under consideration. In situations where strong nonlinearities are bar-
riers to Gaussian approximations, Hessian UQ in combination with non-Gaussian sampling methods have 
shown promise (Petra et al., 2014), but are yet to be explored in ocean and climate modeling. For instance, 
Stochastic Newton MCMC employs a local Gaussian approximation (given by the local inverse Hessian), 
which is then used as a proposal distribution for the posterior probability distribution (Petra et al., 2014).

4.5.  Outlook

In our case study, we made simplifying assumptions regarding the control variables and the prior error 
covariance matrix (Table 1) to enable a clearer understanding of the methodology. These simplifications are 
readily relaxed in future work. Based on the insights gained here, we aim to compute reduced-rank approx-
imations of the Hessian for large observing systems within the ECCO framework. Our case study highlights 
that the stopping criterion for truncating the eigenvalue spectrum has to be chosen carefully, because the 
leading Hessian eigenvectors are not always the most important ones for informing a given QoI. Indeed, 
eigenvectors lower down in the spectrum capture important dynamical teleconnections originating from 
the sensitivity of subsurface (rather than surface) observations. Future work should address the interesting 
question whether the abundance of surface observations (available from satellite altimetry) and their mu-
tual complementarity (due to their local sensitivity) may be able to cover for the large-scale sensitivities of 
subsurface observations.

The technique presented in this paper is complementary to the more widely used OSSEs. Hessian UQ elu-
cidates dynamical teleconnections that communicate observational constraints—via ocean currents, wave 
dynamics, Ekman dynamics, and geostrophy—over basin-scale distances and on monthly to interannual 
time scales. It provides an approach for guiding the design of observing systems that (i) maximize the in-
formation about (possibly remote) QoIs that are difficult or impossible to observe directly, and (ii) are com-
plementary to the existing observational database. We hope that Hessian UQ, in combination with OSSEs 
and other tools, will be more widely used for tackling the grand community challenge of co-designing a 
cost-effective and long-term Atlantic observing system in the coming years.

Appendix A:  Eigen-Decomposition of the Misfit Hessian
For an observing system with M observations, the eigen-decomposition of the misfit Hessian (Equation 3) 
can be computed from the prior-weighted sensitivity vectors ci = BT/2 ∇uObsi via the following two steps: 
(M.1) a QR decomposition of BT/2 AT in N  and (M.2) and an eigen-decomposition in M .

In step (M.1), the QR decomposition of   /2
1

T T
MB A c c  is computed via the Gram-Schmidt process:

•	 �
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provide the desired QR decomposition, that is, they satisfy  /2T TB A QR. In step (M.2), one finds an or-
thogonal M × M matrix O and λ1 ≥…≥ λM ≥ 0 such that
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    1
1diag( , , ) ,T T

MRR R O O�

by means of dense matrix algebra. Combining steps (M.1) and (M.2) gives

      /2 1 1/2 1
misfit 1diag( , , ) ,T T T T T T

MH B A R AB QRR R Q QO O Q�

and the ith column of QO contains the ith eigenvector of Hmisfit, with corresponding eigenvalue λi ≥ 0. The 
eigenvectors corresponding to nonzero eigenvalues are the data-informed directions v1, …, vM′.

Step (M.2) is feasible, as long as the number of observations, M, is small enough to allow for dense matrix 
algebra in M . For large M, one has to resort to randomized numerical linear algebra for low-rank approxi-
mations of the misfit Hessian. Such randomized algorithms continue to follow the outlined steps (M.1) and 
(M.2), except that the decomposition in (M.1) is substituted by an approximate, low-rank QR factorization 
(Halko et al., 2011; Liberty et al., 2007).

Appendix B:  Inflating Noise and Prior Covariances
Modifying the noise covariance matrix via R → αR reflects a uniform deflation (0 < α < 1) or inflation 
(α > 1) of observational noise. This modification results in a reciprocal scaling of the misfit Hessian, Hmisfit 
→ Hmisfit/α. Here, we substituted αR for R in Equation 3, and assume that the sensitivity matrix A remains 
unchanged (even though its evaluation point may change). The scaled misfit Hessian, Hmisfit/α, has un-
changed eigenvectors vi, and new eigenvalues λi/α. Therefore, effectiveness scales as

 
   

   
 

 
( / )

1 / 1� (B1)

and effective proxy potential (Equation 12) as in Equation 21.

We note that the same scaling of the misfit Hessian, Hmisfit → Hmisfit/α, can be achieved by modifying the 
prior covariance matrix via B → B/α, while keeping the noise covariance matrix unchanged. The value 
α = 0 in Figure 9 corresponds therefore either to the limit of vanishing observational noise or inifinite prior 
uncertainty. Similarly, α = 1 represents not only the case of unchanged R and B, but also the case of γR and 
B/γ, for any γ > 0.

Data Availability Statement
The ECCOv4r2 model setup used in this work can be accessed from public repositories and permanent ar-
chives (Campin et al., 2019; Forget, 2018, 2016a, 2016b). Adjoint code was generated using the TAF software 
tool, created and maintained by FastOpt GmbH (http://www.fastopt.com/).
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