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Abstract

Although modern machine learning has the potential to greatly speed up the inter-

pretation of imagery, the varied nature of the seabed and limited availability of expert

annotations form barriers to its widespread use in seafloor mapping applications. This

motivates research into unsupervised methods that function without large databases of

human annotations. This paper develops an unsupervised feature learning method for

georeferenced seafloor visual imagery that considers patterns both within the footprint

of a single image frame and broader scale spatial characteristics. Features within images

are learnt using an autoencoder developed based on the AlexNet deep convolutional

neural network. Features larger than each image frame are learnt using a novel loss

function that regularises autoencoder training using the Kullback–Leibler divergence

function to loosely assume that images captured within a close distance of each other

look more similar than those that are far away. The method is used to semantically

interpret images taken by an autonomous underwater vehicle at the Southern Hydrates

Ridge, an active gas hydrate field and site of a seafloor cabled observatory at a depth of

780m. The method's performance when applied to clustering and content‐based image

retrieval is assessed against a ground truth consisting of more than 18,000 human

annotations. The study shows that the location based loss function increases the rate of

information retrieval by a factor of two for seafloor mapping applications. The effects of

physics‐based colour correction and image rescaling are also investigated, showing that

the improved consistency of spatial information achieved by rescaling is beneficial for

recognising artificial objects such as cables and infrastructures, but is less effective for

natural objects that have greater dimensional variability.
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1 | INTRODUCTION

Autonomous Underwater Vehicles (AUVs) and Remotely Operated

Vehicles (ROVs) routinely collect tens to hundreds of thousands of

georeferenced seafloor images during their dives. Although modern

machine learning has the potential to greatly speed up the inter-

pretation of the images obtained, the absence of large annotated

training datasets and sensitivity of data quality to imaging conditions

has limited their application. Unlike the aerial and satellite images

used in terrestrial mapping, the strong attenuation of light in water
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means that seafloor imaging typically requires underwater terrains to

be followed at close altitudes of between 2 and 10m and the use of

strobed illumination. Under these conditions, even small fluctuations

in altitude strongly affect the colour balance, spatial resolution, and

area covered, reducing the consistency between image frames.

Furthermore, the footprint of each image is limited to an edge length of

just a few metres, which is significantly smaller than many of the geo-

logical and ecological features that are of interest for scientific analysis

and statutory monitoring. Although efforts to develop shared annota-

tion schemes and datasets exist within the marine imaging community

(Bewley, Friedman, et al., 2015; Langenkämper, Zurowietz, Schoening, &

Nattkemper, 2017), the variability of seafloor environments, imaging

systems and the limited number of experts with domain specific

knowledge mean that the development of comprehensive annotated

training datasets similar to those on land (e.g., SpaceNet, ImageNet,

COCO, Pascal VOC) are unlikely to be developed.

This paper investigates the use of unsupervised learning to extract

features and perform semantic interpretation of seafloor imagery.

A key advantage of unsupervised methods is that they do not require

annotated datasets for training. Although the use of unsupervised

learning for clustering seafloor acoustic imagery (Hasan, Ierodiaconou,

Laurenson, & Schimel, 2014) and visual imagery (Kaeli & Singh, 2015;

Steinberg, 2013; Steinberg, Friedman, Pizarro, & Williams, 2011) have

been reported, most previous work has used manually selected features

that have been defined based on domain specific knowledge, limiting

their ability to generalise across datasets. More recently, unsupervised

frameworks that learn suitable features from a dataset have shown

great promise as a general tool for semantic interpretation of seafloor

imagery (Flaspohler, Roy, & Girdhar, 2017; Rao, De Deuge,

Nourani‐Vatani, Williams, & Pizarro, 2017). This study aims to further

develop this concept and improve the extraction of information about

geological and ecological features that exist on spatial scales larger than

the footprint of a single image. This is achieved by developing an

autoencoder framework that regularises features learning using

georeferencing information. The main contributions of this paper are:

• Development of an autoencoder feature learning framework that

can take into account georeferencing information using a novel

loss function based on Kullback–Leibler divergence.

• Investigation of the effectiveness of georeference regularisation,

physics based colour correction and spatial scale information on

learning using an expert labelled ground truth.

• Demonstration of semantic mapping applications of learnt features

through clustering and content‐based image retrieval.

The autoencoder developed in this study learns features using a deep

learning convolutional neural network based on AlexNet (Krizhevsky,

Sutskever, & Hinton, 2012). A novel loss function that uses geor-

eference information is used to regularise learning by minimising the

Kullback–Leibler divergence between affinity in the latent feature

space and geographic location. The proposed method is applied to

semantically interpret images collected by the AUV ae2000f of the

University of Tokyo, Japan. The dataset consists of more than

12,000 images collected from an altitude of 6 m off the seafloor at

the Southern Hydrate Ridge, an active gas hydrate field at a depth of

780m and site of the Ocean Observation Initiative's seafloor cabled

observatory (Cowles, Delaney, Orcutt, & Weller, 2010). The effec-

tiveness of the proposed method is assessed using more than

18,000 expert annotations.

2 | BACKGROUND

2.1 | Semantic interpretation of seafloor imagery

Feature engineering is crucial to effectively interpret visual imagery.

Seafloor images have unique characteristics compared to terrestrial

datasets, and several studies have demonstrated semantic

interpretation using manually selected features that are tailored to

specific subsea applications (Beijbom, Edmunds, Kline, Mitchell, &

Kriegman, 2012; Maki, Kume, Ura, Sakamaki, & Suzuki, 2010; Pizarro,

Rigby, Johnson‐Roberson, Williams, & Colquhoun, 2008; Thornton,

Asada, Bodenmann, Sangekar, & Ura, 2012). These have been used for

classification and segmentation within images and mosaiced re-

constructions. More recently, an attempt to develop a generic feature

extraction method by Steinberg et al. (2011) used Local Binary Pattern

(LBP; Ojala, Pietikäinen, & Mäenpää, 2002) features derived from

greyscale images together with three‐dimensional (3D) rugosity

features and colour features for unsupervised clustering of seafloor

stereo images. In Steinberg (2013), the author proposed Sparse Coding

Spatial Pyramid Matching (ScSPM; Yang, Yu, Gong, & Huang, 2009) as

a more generic approach. However, this required additional techni-

ques to reduce the dimensionality of ScSPM outputs to perform

classification. In Kaeli and Singh (2015), the accumulated histogram of

oriented gradients from keypoints were used to describe each image,

and this was applied to clustering and anomaly detection. A common

characteristic of these methods is that they can preserve multiscale

features in the images, which is important as the size of seafloor

targets can vary. Though these approaches are intrinsically robust to

the scale variance, there exist many hyperparameters which require

manual tuning to optimise performance for each dataset. Moreover,

features larger than the footprint of a single frame cannot be captured.

For supervised learning applications, LBP and ScSPM features

have been shown to be effective (Bewley, Nourani‐Vatani,
et al., 2015; Rao et al., 2017). Deep learning techniques can

optimise feature learning and classification simultaneously within

the same end‐to‐end training process. In Mahmood et al. (2018), a

convolutional neural network (ResNet; He, Zhang, Ren, &

Sun, 2016) was successfully applied to classify coral images. While

prior works had aimed to classify broad seafloor categories such

as “Rock,” “Sand,” “Coral,” the authors accurately classified nine

classes of coral to prove the effectiveness of deep learning for

detailed seafloor image interpretation. On the other hand, little

has been reported on the application of deep learning techniques

for unsupervised feature learning in seafloor visual imaging

applications.
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2.2 | Autoencoders

The autoencoder is a variation of the artificial neural network that is

useful for unsupervised feature learning. It consists of two parts; an

encoder and a decoder. The encoder maps original data x into a

latent representation h of lower dimensionality and can be expressed

as = ( )h xfϕ . The decoder is expressed as = ( )x hgr θ , and re-

constructs xr to be as similar to the original sample x as possible for a

given latent representation. When the values in x are continuous, the

difference between x and xr can be measured as the mean squared

error. Given n samples in a dataset, the autoencoder's objective

function can be formulated as follows,

∑= ‖ − ‖
=

x xL
n

min min
1

,rrec
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i
,
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2
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ϕ θ
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where ϕ and θ denote the parameters of the encoder and decoder,

respectively. The biggest advantage of the autoencoder is that the

networks used can be trained without the need for expert annota-

tions. Since xr is reconstructed from a latent representation h that

preserves key information in x in a lower dimensional space, h can be

thought of as the set of features of a given size that best represents

the original data. In Rao et al. (2017), autoencoders are applied partly

to learn mid‐level features in visual imagery after extracting low‐level
features with ScSPM. Flaspohler et al. (2017) applies convolutional

autoencoders for unsupervised feature learning from seafloor ima-

gery and shows that they outperform hand‐designed features in

discovering characteristic patterns.

To enhance the unsupervised feature learning performance of

autoencoders, several studies have demonstrated training of auto-

encoders with additional loss functions designed to maximise clus-

tering in the latent representation space (Aljalbout, Golkov, Siddiqui,

Strobel, & Cremers, 2018; Min et al., 2018). A typical loss function

can be formulated as

= ( − ) +L L L1 ,all rec clustλ λ (2)

where Lclust is a clustering loss, and λ is a hyperparameter designed to

balance Lrec and Lclust . In (Yang, Fu, Sidiropoulos, & Hong, 2017), the

use of such a loss function for k‐means clustering significantly im-

proved clustering performance. In (Xie, Girshick, & Farhadi, 2016),

Lclust is formulated as follows,
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where kμ is the centroid of cluster k in the latent representation space,

pik and qik are the [ ]i k, th elements of the probabilistic distributions P

and Q, and fj is soft cluster frequency which is defined as ∑ qi ij. ∑ ′k

means that the values of ( + ‖ − ‖ )′
−h1 i k

2 1μ are calculated for all the

clusters ( ′k ) and summed for use as a normalisation factor. The element

qik can be interpreted as the probability of assigning hi to cluster k ,

defined with the Student's t‐distribution as a kernel following t‐SNE
algorithm (Maaten, 2008). The element pik is the target value derived

from qik to maximise the separation between cluster k and the other

clusters. Lclust is trained after training Lrec by minimising the

Kullback–Leibler (KL) divergence between P and Q. Since Lclust in

Equation (3) is derived as a soft cluster assignment and is differentiable,

it can be efficiently optimised using back‐propagation. For public data-

sets, the use of a clustering loss was shown to improve clustering ac-

curacy by up to 2.5% for the MNIST dataset. However, both studies

require the number of clusters to be manually set, which is not practical

for seafloor images or other natural scenes where the appropriate

number of clusters is not known.

Another important application of autoencoders is anomaly de-

tection since anomalous data which are rarely observed in the da-

taset can not be reconstructed precisely and have a large value of

Lrec . Zurowietz, Langenkämper, Hosking, Ruhl, and Nattkemper

(2018) applies autoencoders to detecting anomalous regions in sea-

floor images as candidates for living organisms, since they are less

frequently observed than backgrounds (i.e., rocks and sand).

3 | FEATURE LEARNING FOR SEAFLOOR
IMAGERY

3.1 | Preprocessing

Images taken underwater are distorted by the water column. Colour

and geometry corrections can be applied to improve the consistency

of datasets before feature learning. In this study, colour correction

parameters are estimated based on the altitude each image was ta-

ken at to compensate for wavelength dependent attenuation in the

water column. Altitude is also used to rescale undistorted images and

reduce the scale variance caused by differences in range to targets.

Figure 1 shows sample images of raw (Figure 1a) and preprocessed

(Figure 1b–d) strobed images taken at 5.1 m (top) and 7.0 m (bottom)

altitudes together with their colour histograms. The methods used

for correction are described in the following sections.

3.1.1 | Colour correction

Light attenuation in water differs for each wavelength that constitutes

the RGB channels. Since red attenuates more aggressively than green

or blue wavelengths, uncorrected underwater images appear blue and

green (Jaffe, 1990; Figure 1a). Seafloor images captured at low alti-

tudes (Figure 1a top) are also brighter than the images captured at

high altitudes (Figure 1a bottom). Often wide angle lenses are used to

maximise the imaged area, and this can cause pixels at the centre of

each image to be brighter than those at its edges. Pixel‐wise colour

correction normalises each pixel by the mean and standard deviation

of the same pixel across an entire dataset based on the grey‐world

assumption (Buchsbaum, 1980). This can improve the imbalance be-

tween colour channels and uneven brightness within each image
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(Figure 1b). However, pixel‐wise normalisation cannot correct colour

variations caused by altitude differences within a dataset. To com-

pensate for these variations (Bryson, Johnson‐Roberson, Pizarro, &
Williams, 2013) proposed a practical method that improves colour

consistency by taking into account the attenuation of the different

colour channels. This study applies a similar approach, where the

attenuation is approximated as follows:

( ) = ( ) (− ( ) ) + ( )u v d a u v b u v d c u v, , , , , exp , , , , .xμ ν ν ν ν (4)

The indices [ ]u v, specify each pixel's location in the image frame,

ν is the colour channel, d is range from the centre of the camera to

the seafloor when the image was taken, and ( )u v d, , ,xμ ν is the mean

of all intensities in the dataset. Parameters ( ) ( )a u v b u v, , , , ,ν ν , and

( )c u v, , ν model the effects of the water column for each pixel and

colour channel. These parameters are identified through regression

of the image dataset. In Bryson et al. (2013), the range d is estimated

by stereo image matching and the regression is calculated with a

nonlinear least squares fitting. Since stereo images are not always

available, altitude values from range measurements made by a

Doppler Velocity Log (DVL) are used for estimating d in this study.

This method assumes the seafloor is flat, which is reasonable when

the vertical profile in each image is small relative to the altitude. The

pixel‐wise normalisation also corrects for vignetting. Since outliers in

the dataset disturb the normalisation, the 10% extreme intensity

values for each pixel location are trimmed before determining the

model parameters. Figure 1c shows the result of the proposed colour

correction. Compared to Figure 1b, the brightness between images

taken at different altitudes is more uniform.

3.1.2 | Geometry correction

The 3D information needed to fully compensate for scale effects

within an image frame is not always available. Therefore, this study

approximates scale effects from the imaging altitude and the lens

field of view on a per image basis. Geometric distortions are also

corrected using lens calibration data. Each image is downsampled to

a consistent spatial resolution of 10mm/pixel, which is considered

appropriate for the imaging setup used for the experiments analysed

in this paper (see Table 1). In this study, the roll and pitch of the

images are not taken into account. This is reasonable for correctly

trimmed underwater vehicles with downward‐looking imaging

systems.

3.2 | Autoencoder based feature learning

3.2.1 | Learning features within an image

This study uses AlexNet (Krizhevsky et al., 2012) as the basic

architecture for feature learning. AlexNet was originally designed for

supervised classification and is one of the first successful deeply

stacked artificial neural networks with convolutional layers. It is

effective at learning scale and rotation invariant features. Cheng,

Zhou, and Han (2016) successfully applies AlexNet for extracting

rotation invariant features from satellite image datasets. As with

satellite imagery, seafloor targets captured by downward‐looking
cameras do not have distinct rotations. For the encoder, AlexNet's

original architecture is applied. For the decoder, an inverted version

F IGURE 1 Seafloor images captured at 5.1 m (top, 5 mm/pixel) and 7.0m (bottom, 7mm/pixel) altitude for (a) raw, (b) pixel‐wise
normalisation, (c) attenuation correction and pixel‐wise normalisation, and (d) undistortion and rescaling to a constant spatial resolution

(6 mm/pixel, equivalent to 6.0 m altitude) [Color figure can be viewed at wileyonlinelibrary.com]
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of AlexNet is developed where the convolutional layers are trans-

posed to transconvolutional layers, and the max pooling layers are

transposed to max unpooling layers. An advantage of applying a

common convolutional neural network architecture is that pre‐
trained parameters are available as initial values to accelerate

training for each dataset.

Though smaller dimensionality of the latent representation h is

preferable for application to clustering and image search, excessive

compression would lead to loss of information needed to represent

the original data. In this study, the appropriate dimension was

determined experimentally to minimise the size of the latent

representation while making sure the reconstruction loss Lrecon re-

mained small.

Another difference from the original AlexNet is that the drop-

outs which appear in the original's fully connected layers are not

used. Instead, batch normalisation (Ioffe & Szegedy, 2015) is applied

to each layer to accelerate training and stabilise convergence. The

last layers of both the encoder and decoder have no activation

function because their outputs, that is the latent representation h

and the reconstructed data xr , are continuous values. To enhance the

robustness of the autoencoder, data augmentation and noising

(Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010) is applied.

The images in datasets are augmented by randomly rotating, flipping

and shifting the bounding box of each image patch within ± 25% of

the patch size at each iteration during training. As a noise model,

additive isotopic Gaussian noise is selected to model the noise in

seafloor imagery as the main source of error is expected to be in the

estimation of the parameters in Equation (4). The colour histograms

of each image are first shifted randomly, then isotopic Gaussian noise

is added to each pixel in the image. The reconstruction loss Lrec in

Equation (1) is calculated as the difference between augmented

images before noising and the reconstructed images.

3.2.2 | Georeference regularised learning

Geological and ecological features of the seafloor such as sediments,

bacterial mats and seafloor infrastructures and background sub-

strates such as sands and rocks exist over spatial scale larger than

the footprint of a single image frame. To capture this property, the

following assumption is made:

Assumption. Two images captured within a close distance tend to

look more similar than two that are far away.

In general, a favourable feature learner should embed hi and hj closer

in the latent representation space, if the original data xi and xj are

similar. Based on the assumption, the affinity between hi and hj in

the latent representation space should be modified to account for the

affinity between the geographical locations yi and yj at which xi and xj

are measured. For seafloor imagery, it is reasonable to assume that y

is known since they are captured by AUVs or other platforms with

navigational sensors and methods to determine position are well

documented (Paull, Saeedi, Seto, & Li, 2013). To implement this idea,

the Student's t distribution is used as a kernel to measure affinity

(Maaten, 2008; Xie et al., 2016) in both the latent representation (h)

space and the geographical (y ) space. Thus ′qij , which is the value of

the affinity matrix at index ( )i j, in the latent representation space ′Q

can be defined as,

′ =
( + ‖ − ‖ )

∑ ∑ ( + ‖ − ‖ )

−

′ ′ ′ ′
−

h h

h h
q

1

1
.ij

i j

i j i j

2 1

2 1
(5)

Likewise, pij which is the element of the affinity matrix ′P in

physical space for the georeferenced data can be defined as

′ =
( + ( ))

∑ ∑ ( + ( ))

−
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−

y y

y y
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1 d ,

1 d ,
,ij

i j
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where ( )y yd ,i j is defined as ( ) = (‖ − ‖ )y y y y dd , min ,i j i j max
2 2 and dmax is

the user‐defined upper limit of the distance between the two loca-

tions that are correlated. This limit prevents ′P from overfitting

images that are at a large distance apart. To capture features larger

than a single image, dmax should be enough larger than the physical

footprint sizes of images. An appropriate value dmax works for most

targets and backgrounds, though the sizes of them vary highly. This is

because even if two images belonging to a continuous pattern are

separated farther away than dmax , some images belonging to the same

pattern would exist continuously between them, and all of these

images would be embedded close together in the latent re-

presentation space. The autoencoder is trained so that the KL di-

vergence between the two affinity matrices ′P and ′Q is minimised.

The proposed loss function becomes,

= + = + ( ′‖ ′)L L L L P QKL .all rec geo recλ λ (7)

λ is a hyperparameter for balancing Lgeo and Lrec . This can be opti-

mised iteratively using a mini‐batch. However, if the many of images

in a mini‐batch are sampled from the locations separated farther than

dmax , the elements of ′P become similar thus the training is not reg-

ularised as intended. To avoid this issue, at each mini‐batch sampling,

the first image is randomly chosen from the whole dataset and the

other images to populate the batch are chosen according to their

physical proximity to the first image.

Since t distribution is a heavy‐tailed distribution, Lgeo loosely

regularises the latent representation space to follow the assumption.

The appropriate setting of λ is also necessary because if the reg-

ularisation is too forceful, Lrec is ignored and the latent representa-

tions become meaningless as features for semantic interpretation. In

addition, to deal with the uncertainty of georeference information,

images are randomly shifted within 25% of each image patch size at

every sampling step. The similarity assumption has no hypothesis on

the rotation of images, and so random rotations are applied to the

images to avoid fitting rotation variances in the dataset.

Figure 2 gives an overview of the proposed feature learner. The

proposed autoencoder learns local features within an image using a
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convolutional neural network. Learning is also regularised by the

georeference loss function to account for patterns larger than each

image footprint. Once the autoencoder has been trained to minimise

Equation (7), its encoder can be used as a feature extractor.

Denoising, random rotation and shifting are not applied to extract

features by the encoder. It should be noted that georeference in-

formation y is also not used in the feature extraction phase. This is

because the aim of embedding georeference information is not to

map the absolute coordinates of the images to the latent re-

presentation space, but to control the feature mapping by embedding

the assumption into the trained autoencoder. This allows the encoder

to extract features from datasets unrelated to the training dataset,

and datasets without georeferencing information.

4 | APPLICATIONS OF FEATURE
LEARNING TO SEMANTIC
INTERPRETATION

4.1 | Clustering

Clustering is a useful technique for semantic interpretation of the

features obtained with the proposed autoencoder since it does not

require ground truth and interprets the data in a completely un-

supervised manner. If the dimensionality of the latent representation

h is small enough, clustering techniques can be applied directly

without any further dimensional reduction. To automatically

determine the appropriate number of clusters for the latent re-

presentation, the nonparametric Bayesian method described in Blei

and Jordan (2006) is applied.

4.2 | Image search

Once an interesting target is found in a dataset, images that are

similar in appearance and their geographic distribution are also likely

to be of interest. This information can be automatically retrieved

from large volumes of imagery by calculating the similarity between

the query image and other remaining images in the latent re-

presentation space. This is useful as clustering techniques typically

do not assign an independent cluster to categories with a small

number of samples, and have difficulty with ambiguous categories

that have continuously varying characteristics.

The similarity between a pair of images ( )x xk ,i j can be

derived from the latent representation h of each image, where

established similarity metrics such as the Euclidean distance and

cosine distance can be used (Wu et al., 2013). Since the simila-

rities are defined in the latent representation space, geor-

eference information is unnecessary for this application once the

autoencoder has been trained. However, predicting the perfor-

mance of the two metrics is difficult for features learnt by an

autoencoder since the interpretation of their meaning is

nontrivial. Therefore, this study compares their performance

experimentally.

F IGURE 2 Flow diagram for calculating the proposed loss function Lall (Equation (7)). Lrec is the reconstruction loss of the autoencoder

(Equation (1)). Lgeo is the divergence loss between the two affinity matrices in the latent representation space (Equation (5)) and in the physical
space (Equation (6)) [Color figure can be viewed at wileyonlinelibrary.com]
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5 | EXPERIMENT

The methods developed in this study are applied to seafloor imagery

obtained at the Southern Hydrate Ridge, a gas hydrate field that is

home to a seafloor cabled observatory (Cowles et al., 2010) located

100 km off Oregon, USA (Table 1). Over 12,000 images of the site were

collected using the AUV ae2000f of the Institute of Industrial Science,

University of Tokyo, Japan, during the Schmidt Ocean Institute's

FK180731 #Adaptive Robotics campaign in August 2018. Table 1 gives

an overview of the dataset, and Figure 3a shows an ortho‐projected
mosaic created from the images in the dataset using a stereo SLAM

pipeline developed by the Australian Centre for Field Robotics,

University of Sydney, Australia (Johnson‐Roberson, Pizarro, Williams, &

Mahon, 2010; Mahon, Williams, Pizarro, & Johnson‐Roberson, 2008).
Five small patches are cropped from each image at this size from

the four corners and the centre to obtain the proper size of images

for the proposed AlexNet based autoencoder ( ×227 227, over-

lapping partially). When rescaling is applied, the original images are

first scaled so that they have a constant spatial resolution of

10mm/pixel. The total number of patches for autoencoder training is

62,875. The georeference information (position where each image

was captured) is obtained through the visual SLAM pipeline devel-

oped in Mahon et al. (2008). This has been applied to data collected

by the AUV's navigational sensors, consisting of an iXblue Quadrans

IMU, RDI 300 kHz DVL, Paroscientific depth sensor, iXblue Gaps

USBL and stereo imagery collected by the SeaXerocks mapping

system of the University of Tokyo, Japan (Thornton et al., 2016).

The relative position accuracy using this combination is estimated to

be <1m across the dataset. This is of a similar order to the randomly

allocated shifting of images applied for data augmentation when

training the autoencoder (25% of 2.27m). This allows the auto-

encoder to take localisation uncertainty into consideration and

avoids overfitting to the georeference information.

5.1 | Ground truth for evaluation

Ground truth annotations were generated using SQUIDLE+ (Bewley,

Friedman, et al., 2015) by experts for 18,740 (approx. 30%) image

patches randomly selected from the original 62,875 image patches.

Figure 3 shows the spatial distributions, the numbers and the ex-

amples of each category. Boundaries between some categories are

ambiguous, especially for natural features, for example, “Rock,”

“Sand,” and “Carbonate,” where the density of the relevant targets

vary on a continuum. From the appearances of the ground truth

categories shown in Figure 3c, it is noticeable that these categories

form the larger patterns than the footprint of images, thus the pro-

posed georeference regularisation is assumed to be effective. In this

experiment, only the dominant label is given to each image patch

based on individual annotator's judgement. Although this complicates

the quantitative evaluation of performance, the relative performance

between different conditions of the proposed feature learning can

be used to verify how effective the methods developed in this paper

are for semantic interpretation.

5.2 | Autoencoder training

To evaluate the effectiveness of the novel aspects of the proposed

method, the autoencoder is trained to learn features in the dataset

with/without colour attenuation correction (Section 3.1.1), rescaling

(Section 3.1.2), and the georeference regularisation (Section 3.2.2).

The dimensionality of h is set as 16 since the Lrec does not vary

significantly even if larger values are used. The weights in the auto-

encoder are initialised with the original AlexNet trained with the

ImageNet dataset. The mini‐batch size is fixed as 256, and an Adam

optimiser (Kingma & Ba, 2014) is used. The value for dmax , which

limits ( )y yd ,i j in Equation (6), is set as 8.0m. This is approximately 3.5

times the edge length of each image patch, where this value is ap-

propriate for describing even large scale features as the images in

this dataset constitute a dense grid with continuous cover between

adjacent image pairs. A value of = e1 5λ is used in Equation (7) for

the georeference regularisation, and the number of epochs is set as

2,000. These parameters are empirically determined as values where

both Lrec and Lgeo in Equation (2) decrease monotonically during the

training. The values of Lrec are not considerably different at the end of

training regardless of whether the georeference regularisation is

applied or not, demonstrating that the value used for λ does not over

utilise the georeference information. When training without the

georeference regularisation, each epoch contains all of the image

TABLE 1 Southern Hydrate Ridge dataset description

Date 4/8/2018–9/8/2018 (4 dives)

Location Southern Hydrate Ridge

(N ∘44.6 , W ∘125.1 )

Seafloor depth (m) 765–785

Altitude (m) 5.0–7.0

AUV ae2000f

Camera system SeaXerocks (Thornton et al., 2016)

Number of images 12,575

Original image resolution ×1280 1024

Original space resolution

(mm/pixel)

approx. 5–7

FoV (Underwater) ×∘ ∘68 57

Total area covered (m2) 118,000

Mapping Method Dense grid with 30% overlap

between images

Ground truth categories 7 categories as shown in Figure 3c

Annotation platform SQUIDLE+

Note: The dataset was collected using the AUV ae2000f during the

Schmidt Ocean Institute's FK180731 #Adaptive Robotics campaign.

A total of 62,875 image patches are cropped from the original images and

used for autoencoder training.
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patches in the dataset. With the georeference regularisation, this is

not guaranteed because of the unique sampling strategy described in

Section 3.2.2. However, the large number of epochs ensures that the

data is evenly sampled for autoencoder training. After autoencoder

training, the latent representation h of each image x is obtained by

processing x with the trained encoder without any rotating, shifting

or addition of noise.

It can be said that a better feature extractor outputs smaller

distances between samples for the same category and larger dis-

tances for the different categories in the latent representation space.

Since this viewpoint is the same as internal evaluation metrics for

clustering performance, the proposed feature learning can be eval-

uated through the metrics by inputting ground truth instead of

clustering results. Silhouette score (Rousseeuw, 1987), Calinski and

Harabasz score (CH; Caliński & Harabasz, 1974) and Davies‐Bouldin
score (DB; Davies & Bouldin, 1979) are used for the evaluation in this

experiment. However, it should be noted that while these are the

most widely used metrics to assess clustering performance, it has

been reported that these existing metrics cannot completely take

into account imbalances in datasets (Krawczyk, 2016). Although

the dataset analysed in this study is highly skewed (see Figure 3c)

these metrics are used since no standard methods are available that

can overcome these limitations.

5.2.1 | Results

The internal evaluation metrics corresponding to each training condi-

tion, labelled C1 to C9, are shown in Table 2. The latent representations

h are normalised in each dimension as standard scores. Table 2 shows

that the proposed georeference regularisation improves performance

significantly for all metrics. The attenuation correction also increases

performance, but the effectiveness of rescaling is less clear from these

results alone. Figure 4 illustrates the distribution of expert annotations

in the latent representation space h using t‐SNE visualisation

(Maaten, 2008). Figure 4a,b are for autoencoders trained without/with

the georeference regularisation, respectively (corresponding to C4 and

C8 in Table 2). The most distinguishing characteristic of the resulting

representation is that the distribution corresponding to “Cable” forms

an obvious cluster at the centre of Figure 4b with clear separation from

other categories, while it is widely distributed in Figure 4a without

the georeference regularisation. This illustrates how the georeference

regularisation allows the autoencoder to prioritise features that are

common between images taken in close proximity to each other

over features that would be learnt without this regularisation. The

other ground truth categories also gather more closely in Figure 4b

than in Figure 4a, as reflected by the improved evaluation metrics in

Table 2.

F IGURE 3 Overview of Southern Hydrate Ridge dataset. (a) and (b) show that each ground truth category has a characteristic spatial
distribution. Many of samples in the dataset are categorised as either “Rock” or “Sand.” “Shell Fragment” is often observed around “Bacterial
Mat.” “Cable” has a characteristic distribution (a) Ortho‐projected top view of mosaiced Southern Hydrate Ridge dataset; (b) Distribution of

ground truth category; and (c) Samples from each ground truth category [Color figure can be viewed at wileyonlinelibrary.com]
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5.3 | Clustering

In this experiment, normalised mutual information (NMI; Estévez,

Tesmer, Perez, & Zurada, 2009) is used for evaluation, following the

previous works which also use imbalanced seafloor datasets for their

experiments (Beijbom et al., 2012; Flaspohler et al., 2017; Kaeli &

Singh, 2015; Rao et al., 2017; Steinberg, 2013; Steinberg et al., 2011).

A NMI score is bounded between 0 (no mutual information) and

1 (perfectly correlated) and it is theoretically equivalent to the

V‐measure. A large NMI score means that the clustering result has a

large amount of mutual information with the ground truth and

corresponds to superior clustering performance. The numbers of

clusters found using the nonparametric Bayesian method are not

guaranteed to be the same as the number of categories used in

human annotation. NMI is a favourable metric for this experiment

because it does not require the targets to have the same number of

clusters or categories. However, the result should be carefully

investigated since it does not completely manage imbalanced

datasets (Krawczyk, 2016).

5.3.1 | Results

Table 2 shows the number of clusters and the NMI scores for each

autoencoder. The proposed georeference regularisation improves

the NMI scores by a factor of 1.6 (C2 to C6) to 2.2 (C4 to C8) com-

pared to equivalent analysis without this regularisation. The mod-

ification of the loss function in Equation 7 is effective at controlling

the training process so that it obtains solutions closer to human

interpretation. This can be expected as it leverages an assumption

about the scale of seafloor habitats and features, compensating for

the limited image footprints that can be achieved underwater.

TABLE 2 Evaluation results of the proposed feature learning and clustering

Condition label C1 C2 C3 C4 C5 C6 C7 C8 C9

Pixel‐wise normalisation – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Attenuation correction – – – ✓ ✓ – – ✓ ✓

Rescaling – – ✓ – ✓ – ✓ – ✓

Georeference regularisation – – – – – ✓ ✓ ✓ ✓

Silhouette −0.020 −0.026 −0.025 −0.004 −0.019 0.003 0.010 0.032 0.035

CH 253 160 476 290 272 622 696 1078 772

DB 18.7 14.6 10.2 8.0 7.3 5.1 4.7 3.4 3.5

No. of clusters 15 10 9 10 8 15 13 12 11

NMI 0.078 0.101 0.111 0.103 0.104 0.165 0.176 0.227 0.216

Note: The check (✓) and dash (–) marks illustrate whether each preprocessing or regularisation is applied or not, respectively. Each condition is labelled

from C1 to C9 and these labels are referred to in the later sections. The best scores (the lowest for DB and the highest for Silhouette, CH and NMI) are

shown in bold.

Abbreviations: CH, Calinski and Harabasz score; DB, Davies‐Bouldin score; NMI, normalised mutual information.

F IGURE 4 A t‐SNE visualisation of the latent representation h for the expert annotations (a) without georeference regularisation (C4 in
Table 2); (b) with georeference regularisation (C8 in Table 2) [Color figure can be viewed at wileyonlinelibrary.com]
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When georeference regularisation is used, the proposed light

attenuation correction improves the NMI score by 23% (C7 to C9)

and 38% (C6 to C8) compared to a simple grey‐world assumption. In

contrast, no increase in performance is observed when the geor-

eference regularisation was not used. A possible explanation is that

when autoencoder training is regularised to the local neighbour-

hood, colour information is used in the latent space since adjacent

images will tend to show a similar colour of seafloor. Under this

assumption, any colour artefacts will degrade clustering perfor-

mance. With no georeference regularisation, the autoencoder can

easily end up being trained using images that are far apart, where

the actual seafloor colour would tend to be more varied. In this

scenario, the autoencoder would not prioritise colour information in

the latent representation space, and so be less sensitive to differ-

ences in the colour correction method used. The results for re-

scaling are inconclusive with no significant difference observed in

the NMI scores compared to equivalent experiments without re-

scaling. Although it is thought that rescaling would be effective for

images of objects with consistent physical sizes, objects in the

natural scenes that dominate the dataset vary widely in size, and so

no significant gains in NMI performance could be achieved. The

maximum NMI score achieved is not high (0.227), which is in part

due to the impact of imbalanced categories as reported by

(Krawczyk, 2016), and therefore a category based evaluation is also

necessary.

Representative images from each cluster in the result with the

highest NMI score (C8 in Table 2) are shown in Figure 5. The re-

lationship between the ground truth and this clustering result are

shown in Table 3. To obtain a better understanding of each identified

cluster, a treemap (Bruls, Huizing, & Van Wijk, 2000) is shown in

Figure 6, which allows the relative sizes of each cluster and their

representative samples to be visualised simultaneously. To discuss

the performance of the clustering result quantitatively, the confusion

matrix is shown in Figure 7. Since the non‐parametric Bayesian

method optimises the number of clusters automatically, some clus-

ters are manually merged based on the appearance of their re-

presentative samples so that the number of merged clusters

corresponds to the number of ground truth categories. For example,

cluster ‘A’, ‘B’ and ‘F’ are merged and regarded as ‘Rock’, and they

appear at the first column of the confusion matrix as a single merged

cluster. Since the number of ‘Artificial Object’ in ground truth is ex-

tremely small compared to other categories, the category is merged

with ‘Cable’ and a ×6 6 confusion matrix is shown. Table 4 shows the

precision, recall and F1‐score for each ground truth category, based

on the confusion matrix. The table shows that the proposed method

can separate ‘Rock’, ‘Sand’, and ‘Bacterial Mat’ with F1‐scores greater

F IGURE 5 Representative samples of
each cluster (C8 in Table 2) [Color figure
can be viewed at wileyonlinelibrary.com]
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than 0.6. The F1‐scores for other categories are lower since they are

subjective classes where there is ambiguity in human judgement. For

example, ‘Carbonate’, which shows the lowestF1‐score (0.25), is often

confused with ‘Rock’ and ‘Sand’ as shown in the confusion matrix.

This result is reasonable because the density of both rock and car-

bonate distributions on sandy backgrounds vary on a continuum.

Further verification to distinguish carbonates and rocks would re-

quire physical sampling, and it can be said that the clustering

provides a meaningful result, in line with human interpretation,

considering the inherent limitations of visual observation.

5.3.2 | Habitat map

Habitat maps are useful as they summarise the geological and eco-

logical patterns observed in a seafloor region. Figure 8 shows the

TABLE 3 Contingency table of the clustering result

A B C D E F G H I J K L Total

Rock 1,741 2,039 436 425 229 776 489 206 755 22 207 335 7,660

Sand 1,096 62 1,448 937 1,237 298 660 207 3 3 646 184 6,781

Carbonate 161 116 99 305 74 317 147 233 299 43 103 117 2,014

Shell Fragment 15 3 20 142 13 30 35 504 17 305 27 40 1,151

Bacterial Mat 3 1 2 6 0 2 1 64 1 639 1 31 751

Cable 25 17 8 6 3 8 8 4 9 28 2 226 344

Artificial Object 2 2 0 2 0 5 3 1 3 6 1 14 39

Total 3,043 2,240 2,013 1,823 1,556 1,436 1,343 1,219 1,087 1,046 987 947 18,740

Note: Rows and columns correspond to the ground truth and the clustering result using C8 in Table 2, respectively.

F IGURE 6 Visualisation of the size of each cluster (C8 in Table 2) using a tree‐map representation. The same colours as Figure 5 are assigned for

each cluster and the areas are proportional to the number of image patches in each cluster [Color figure can be viewed at wileyonlinelibrary.com]
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habitat map obtained by plotting the semantic clusters generated by

the proposed method. Figure 8b shows the result with the highest

NMI score (C8 in Table 2), and Figure 8a is the clustering result for

the same preprocessing steps but without the georeference reg-

ularisation (C4 in Table 2). Comparison with the distribution of

ground truth in Figure 3b illustrates that the habitat map in Figure 8b

can identify areas corresponding to categories such as “Bacterial

Mat,” “Shell Fragment,” and “Cable” more effectively than the habitat

map in Figure 8a. Since these categories have geographic distribution

patterns larger than the footprint of an image, the proposed

georeference regularisation is effective at extracting the features

that are representative of these categories.

5.4 | Image search

The performance of content based image search using Euclidean dis-

tance and cosine similarity are quantitatively evaluated by taking the

average values of top‐10 accuracy, defined as the rate of images re-

trieved with the same ground truth category as the query image for each

ground truth category (Wu et al., 2013). Feature learning is achieved for

the proposed autoencoder trained with/without the georeference reg-

ularisation and with/without rescaling. These correspond to auto-

encoders labelled C4, C5, C8, and C9, respectively, in Table 2.

5.4.1 | Results

The results in Table 5 show that the proposed georeference reg-

ularisation improves the performance in every category, with an

overall increase in accuracy across all categories from 47% to 59%.

The largest improvement is for “Cable,” from 10% to 15% accuracy

without the georeference regularisation to a maximum value of

F IGURE 7 Confusion matrix between ground

truth categories and the unsupervised clustering
result using C8 in Table 2. Some clusters and
ground truth categories are manually merged

based on the appearance of representative
images. The values in the matrix are normalised,
and diagonal elements correspond to the recall

values in Table 4

TABLE 4 Precision, recall, and F1‐score for the clustering result
using C8 in Table 2

Category Precision Recall F1‐score

Rock 0.68 0.59 0.63

Sand 0.68 0.59 0.63

Carbonate 0.21 0.30 0.25

Shell fragment 0.41 0.44 0.43

Bacterial mat 0.61 0.85 0.71

Cable, artificial object 0.25 0.63 0.36

Note: The same cluster merging as in Figure 7 is applied. The total

accuracy across all categories is 0.56.

F IGURE 8 Habitat maps based on unsupervised clustering result. The clusters corresponding to “Bacterial Mat” (“J”), “Shell Fragment” (“H”)
and “Cable” (“L”) appear clearly in (b). The results demonstrate that the proposed georeference regularisation enhances clustering performance
over wide spatial distributions (a) without georeference regularisation (C4 in Table 2); (b) with georeference regularisation (C8 in Table 2)
[Color figure can be viewed at wileyonlinelibrary.com]
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53.7% with the regularisation. Although rescaling does not influence

the accuracy of most categories, the accuracy of “Cable” improves

noticeably from 40% to 52%. The results indicate that rescaling is

only effective when learning the features of objects with a fixed size,

which are in this case “Cable” and “Artificial Object,” improving their

accuracy scores by a factor of 1.39 and 1.16 when rescaling is ap-

plied, while the other categories that have a large amount of natural

variability show no improvement. This fact shows an important

characteristic of the autoencoder, which prioritises meaningful fea-

tures automatically. If scale variant features are found to be better

descriptors, then the autoencoder will prioritise this property. The

results show that for some categories such as “Cable” and “Artificial

object,” physical scaling can pose benefits. For many categories, the

difference is negligible, illustrating that the autoencoder does no

need to make such explicit assumptions.

Regarding the similarity metrics, Equation (7) for the proposed

georeference regularisation assumes that the similarities of h are re-

lated to a t‐distribution, which is derived from Euclidean distance

(‖ − ‖h hi j ). However, interpretation of the autoencoder learnt feature

space is challenging, and the results indicate that Euclidean distance and

cosine similarity are almost equivalent for the dataset used in this study.

Identifying the location of similar images is important to interpret

spatial patterns of interesting targets. In comparison to clustering,

which interprets the representative patterns in the dataset, content

based image search can generate target specific distribution maps

using the same unsupervised feature space. This can be useful when

specific targets within a cluster are of interest, or where the target is

rare and so does not form an independent cluster. Since the query

target is known, the autoencoder and similarity metric used can be

tailored to the type of object, where for human‐made objects such as

“Cable” and “Artificial Object,” the georeference regularisation with

rescaling and cosine similarity provided the best performance.

5.4.2 | Utility map

The utility maps in Figure 9 show some results of image search

and the locations of images that have a similar appearance.

Figure 9a shows the result of a bacterial mat image search. On

the whole, the areas with high similarity in the utility map show

similar distributions “Bacterial Mat” in the ground truth

(Figure 3b). Since the similarity scores vary continuously, the

result is useful for analysing small differences between images

which are categorised as “Bacterial Mat.” Figure 9b shows the

result when a typical image of a cable is chosen as a query. The

image search successfully extracts cables deployed in this area,

and the utility map shows the distribution of cables more clearly

than the clustering result (Figure 8b). Features that are small,

more sparsely distributed and few in numbers such as seafloor

infrastructures and crabs are less likely to form independent

clusters using the non‐parametric Bayesian method (Figure 5).

However, relatively minor categories such as these can be

effectively found using content based image search, where

Figure 9c and 9d show the different distributions in this area.

These utility maps can form a useful tool for rapidly under-

standing complex, multiparameter spatial patterns in georefer-

enced imagery. An important point is that the distributions in

Figure 9 are spread widely and are not limited within the

neighbouring area of the query images. This fact confirms that

the proposed georeference loss function in Equation (7) allows

meaningful features to be extracted from the images themselves

without over‐regularising the results of the image search. Look-

ing more closely at Figure 9d shows that some of the results of

the search do not include crabs, but instead contain other types

of benthic organisms. To obtain a more precise result for these

categories, supervised learning based approaches are more

TABLE 5 Mean top 10 accuracy of search in each category (%). ‘l2’ and ‘cos’ in the similarity metric correspond to the euclidean distance and
cosine similarity, respectively. As with the clustering result in Table 2, the proposed georeference regularisation significantly improves the
accuracy scores, especially for ‘Cable’ which has a characteristic spatial distribution

Condition in Table 2 C4 C5 C8 C9

Georeference regularisation – – – – ✓ ✓ ✓ ✓

Rescaling – – ✓ ✓ – – ✓ ✓

Similarity metric l2 cos l2 cos l2 cos l2 cos

Rock 53.1 51.5 52.8 52.6 66.6 66.6 63.2 65.5

Sand 56.5 57.0 55.2 55.3 63.9 64.9 63.9 62.0

Carbonate 16.7 16.1 15.1 15.0 27.8 27.3 25.6 24.1

Shell fragment 19.0 18.8 16.0 15.7 43.2 41.2 39.3 38.7

Bacterial mat 61.1 62.9 58.3 58.2 71.0 72.1 69.8 70.8

Cable 11.0 11.8 15.6 13.5 40.2 39.7 51.3 53.7

Artificial object 3.8 4.4 4.1 4.4 4.9 4.1 6.4 6.7

NMI in Table 2 (for Reference) 0.10 0.10 0.23 0.22
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appropriate (Walker, Yamada, Prugel‐Bennett, & Thornton,

2019). The proposed content based image search may be useful

to reduce the effort required for manual annotation by filtering

out candidate images that are more likely to contain the targets

of interests.

6 | CONCLUSION

This paper has described a novel, unsupervised feature learning

method for semantic interpretation of seafloor visual imagery and

applied it to a seafloor dataset consisting of more than

F IGURE 9 Image search result. Red frame images are query and yellow frame images are top 5 similarity images. The maps on the right show
the similarity distributions between the queries and all the other images in the dataset. The red circles in the utility maps show the locations of

the query images (a) bacterial mat; (b) cable; (c) infrastructure; (d) crab [Color figure can be viewed at wileyonlinelibrary.com]
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12,000 images. Although this study has focused on subsea visual

mapping applications, the methods are equally applicable to terres-

trial georeferenced imaging applications such as drone and satellite

imaging. The study has demonstrated that

• Autoencoders implemented using deep convolutional neural net-

works form an effective and generic method to learn features in

seafloor visual imagery.

• The use of georeference regularisation implemented using the

Kullback–Leibler divergence criteria leads to a factor of two im-

provement in the retrieval of information from the seafloor images

analysed in this study. This includes geomorphological and ecological

patterns that occur on spatial scales larger than a single image frame.

• Correction of colour information in seafloor imagery using physics

based techniques improves information retrieval rates by more

than 20% when the georeference regularisation is used.

• Correction for spatial scale and distortion of images before feature

learning improves the recognition of artificial structures on the

seafloor. However, for natural objects that exhibit significant

variability in size and shape, the gains in performance achieved

through scale correction are minimal.

• Nonparametric Bayesian unsupervised clustering and content‐based
image search can be implemented directly on features learnt by the

proposed autoencoder for effective semantic interpretation and

visualisation of spatial patterns in seafloor visual mapping data.

• No significant difference was found between the performance of

content‐based retrieval of images when using Euclidean distance

and cosine similarity metrics in the latent feature space.

The images used in this study can be accessed via SQUIDLE+

(https://soi.squidle.org) as (Campaign: fk180731[ID:53], deployment:

20180804_093404_20180804_143258_20180805_123456_20180-

809_083837_ae2000f_sx3[ID:711]). The expert annotations for the

images can be accessed at SHR_AE2000_3000samples[ID:80] and

SHR_AE2000_1000samples[ID:74] in uos‐oplab‐fk180731[ID:9] da-

tasets. The colour correction and undistortion methods used to

preprocess images in this study can be found on https://github.com/

ocean‐perception/oplab_pipeline/tree/master/correct_images.
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